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PREFACE.

HIS book is intended to form a companion volume to myedition of the treatise of Apollonius on Conic Sections

lately published. If it was worth while to attempt to make the

work of "the great geometer" accessible to the mathematician

of to-day who might not be able, in consequence of its length

and of its form, either to read it in the original Greek or in a

Latin translation, or, having read it, to master it and grasp the
whole scheme of the treatise, I feel that I owe even less of an

apology for offering to the public a reproduction, on the same

lines, of the extant works of perhaps the greatest mathematical

genius that the world has ever seen.
Michel Chasles has drawn an instructive distinction between

the predominant features of the geometry of Archimedes and

of the geometry which we find so highly developed in Apollo-
nius. Their works may bc regarded, says Chasles, as the origin

and basis of two great inquiries which seem to share between

them the domain of geometry. Apollonius is concerned with

the Geometry of Forms and Situations, while in Archimedes

we find the Geometry of Measurements dealing with the quad-

rature of curvilinear plane figures and with the quadrature

and cubature of curved surfaces, investigations which '"gave

birth to the calculus of the infinite conceived and brought

to perfection successively by Kepler, Cavalieri, Fermat, Leibniz,
and Newton." But whether Archimedes is viewed as the

man who, with the limited means at his disposal, nevel%heless

succeeded in performing what are really integrations for the

purpose of finding the area of a parabolic segment and a
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spiral, the surface and volume of a sphere and a segment

of a sphere, and the volume of any segments of the solids

of revolution of the second degree, whether he is seen finding

the centre of gravity of a parabolic segment, calculating

arithmetical approximations to the value of _r, inventing a

system for expressing in words any number up to that which

we should write down with 1 followed by 80,000 billion

ciphers, or inventing the whole science of hydrostatics and at

the same time carrying it so far as to give a most complete

investigation of the positions of rest and stability of a right

segment of a paraboloid of revolution floating in a fluid, the

intelligent reader cannot fail to bo struck by the remarkable

range of subjects and the mastery of treatment. And if these

,-.re such as to create genuine enthusiasm in the student of

Archimedes, the style and method are no less irresistibly

attractive. One feature which will probably most impress the

mathematician accustomed to the rapidity and directness secured

by the generality of modern methods is the delz_e_'ation with

which Archimedes approaches the solution of any one of his

main problems. Yet this very characteristic, with its incidental
effects, is calculated to excite the more admiration because the

method suggests the tactics of some great strategist who

foresees everything, eliminates everything not immediately

conducive to the execution of his plan, masters every position

in its order, and then suddenly (when the very elaboration of

the scheme has almost obscured, in the mind of the spectator,
its ultimate object) strikes the final blow. Thus we read in

Archimedes proposition after proposition the bearing of which is

not immediately obvious but which we find infallibly used later

on; and we are led on by such easy stages that the difficulty of

the original problem, as presented at the outset, is scarcely

appreciated. As Plutarch says, "it, is not possible to find in

gegmetry more difficult and troublesome questions, or more

rumple and lucid explanations." But it is decidedly a rhetorical

exaggeration when Plutarch goes on to say that we are deceived
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by the easiness of the successive steps into the belief that anyone

could have discovered them for himself. On the contrary, the

studied simplicity and the perfect finish of the treatises involve

at the same time an element of mystery. Though each step

depends upon the preceding ones, we are left in the dark as to

how they were suggested to Archimedes. There is, in fact,
much truth in a remark of Wallis to the effect that he seems

"as it were of set purpose to have covered up the traces of his

investigation as if he had grudged posterity the secret of his

method of inquiry while he wished to extort fxom them assent

to his results." Wallis adds with equal reason that not only

Archimedes but nearly all the ancients so hid away from

posterity their method of Analysis (though it is certain that

they had one) that more modern mathematicians found it easier

to invent a new Analysis than to seek out the old. This is no

doubt the reason why Archimedes and other Greek geometers

have received so little attention during the present century and

why Archimedes is for the most part only vaguely remembered
as the inventor of a screw, while even mathematicians scarcely

know him except as the discoverer of the principle in hydro-

statics which bears his name. It is only of recent years that

we have had a satisfactory edition of the Greek text, that of

Heiberg brought out in 1880-1, and I know of no complete
translation since the German one of Nizze, published in 1824,

which is now out of print and so rare that I had some difficulty

in procuring a copy.

The plan of this work is then the _me as that which I

followed in editing the Conics of Apollonius. In this case,

however, there has been less need as well as less opportunity for

compression, and it has been possible to retain the numbering

of the propositions and to enunciate them in a manner more

nearly approaching the original without thereby making the
enunciations obscure. Moreover, the subject matter is not so

complicated as to necessitate absolute uniformity in the notation

used (which is the only means whereby Apollonius can be made
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even tolerably readable), though I have tried to secure as much

uniformity as was fairly possible. My main object has been to

present a perfectly faithful reproduction of the treatises as they

have come down to us, neither adding anything nor leaving out

anything essential or important. The notes are for the most

part intended to throw light on particular points in the text or

to supply proofs of propositions a_sumed by Archimedes as

known; sometimes I have thought it right to insert within

square brackets after certain propositions, and in the same type,

notes designed to bring out the exact significance of those

propositions, in cases where to place such notes in the Intro-

duction or at the bottom of the page might lead to their being
overlooked.

Much of the Introduction is, as will be seen, historical; the

rest is devoted partly to givhlg a more general vicw of certain

methods employed" by Archimedes and of their mathematical

significance than would be possible in notes to separate propo-

sitions, and partly to the discussion of certain questions arising

out of the subject matter upon which we have no positive

historical data to guide us. In these latter eases, where it is

necessary to put forward hypotheses for the purpose of explaining

obscure points, 1 have been careful to call attention to theh"

speculative character, though I have given the historical evidence

where such can be quoted in support of a particular hypothesis,

my object being to place side by side thc authentic information

which we possess and the inferences which have been or may"

be drawn from it, in order that the reader may be in a position

to judge for himself how far he can accept the latter as probable.

Perhaps I may be thought to owe an apology for the length of

one chapteron theso-calledve_rc_,orinclinatioaes,which goes

somewhat beyond what is necessaryfor the elucidationof

Archimedes;but the subjectisinteresting,and I thoughtit

wellto make my accountof it as completeas possiblein

orderto round off,as itwere,my studiesin Apolloniusand
Archimedes.
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I have had one disappointmentin preparingthisbook for

the press. I was particularlyanxiousto placeon or opposite

the title-pagea portraitof Archimedes,and I was encouraged

in thisideaby the factthatthe title-pageof Torelli'sedition

bearsa representationillmedallionformon which areendorsed

the words Archimedis e_gies marmorea i_ veteri auaglypho

Romae asservato. Caution was howcver suggested when I

found two more portraits wholly unlike this but still claiming to

represent Archimedes, one of them appearing at the beginning

of Peyrard's French translation of 1807, and the other in

Gronovius' Thesa_trus Graecarum Antiquitatum; and I thought

it well to inquire further into the matter. I am now informed

by Dr A. S. Murray of the British Museum that there does

not appear to be any authority for any one of the three, and

that writers on iconography apparently do not recognise an

Archimedes among existing portraits. I w_, therefore, re-

luctantly obliged to give up my idea.

The proof sheets have, as on the former occasion, been read

over by my brother, Dr R. S. Heath, Principal of Mason College,

Birmingham, and I desire to take this opportunity of thanking

him for undertaking what might well have seemed, to any one

less genuinely interc_stcat in Greek geometry, a thanklc_ task.

T. L. HEATH.

March, 1897o

J
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INTIRODUCTION.

CHAPTER I.

ARCHIMEDES.

A LIFE of Archimedes was written by one Heracleides e, but

this biography has not survived, and such particulars as are known

have to be collected from many various sourcesf. According to

Tzetzes:_ he died at the age of 75, and, as tie perished in the sack

of Syracuse (B.c. 212), it follows that he was probably born about

287 B.c. He was the son of Pheidias the astronomerS, _nd was

on intimate terms with, if not related to. king I-I_ieron and his

* Eutocius mentions this work in his commentary on Archimedes' Measure.
merit of the circle, d_ ¢p:_<rtv"HparXdbq_ _:u _'_ "ApXUX_Soo_flb¢. He alludes to it
again in his commentary on Apollonms' Conics (ed. Heiberg, VoL n. p. 188),
where, however, the name is wrongly given as 'Hpd._Xetr_. This Heraclside_ is
perhaps the same as the Heraeleides mentioned by Archimedes himself in the
preface to his book On Spirals.

_" An exhaustive collection of the materials is given in Heiberg's Quaestwnes

Archimedeae (1879). The preface to Torelli's edition also gives the main points,

and the same work (pp. 363--370) quotes at length most of the original
references to the mechanical inventions of Arehtmedes. Further, the article

Archimedes (by HuRsch) in Pauly-Wissowa's Real-Encyclo'padie der classischen

Altertumswissensehaften gives an entirely admirable summary of all the available
informsttion. See also Susemihl's Geschivhte der grtechischen Litteratur zn der
Alsxandrtnerzeit, I. pp. 723--733.

_. Tzetzes, Chiltad., H. 35, 105.
§ Pheidia8 is mentioned in the Sand.reckoner of Archimedes, r_'r _rt_r_

tt_r_'la_ Efi&l/_ou. @etSta 8t raft &go_ lrarpb_ (the last words being the correction
of Blmm for raft 'Ax_rarpo_, the reading of the text). Cf. Schol. Clark. in
Oregor. Na_anz. Or. 34, p. 355 a Morel. 4,et$la_ rb p_v 7_ro_ _u Zopax6¢to_

_reoX_ IJ '&oX_#aou5x=r_p.
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son Gelon. It appears from a passage of Diodorus ° that he spent

a considerable time at Alexandria, where it may be inferred that
he studied with the succe_ors of Euclid. It may have been at

Alexandria that he made the acquaintance of Conon of Samos

(for whom he had the highest regard both as a mathematician

and as a personal friend) and of Eratosthenes. To the former
he was in the habit of communicating his discoveries before their

publication, and it is to the latter that the famous Cattle-problem
purports to have been sent. Another friend, to whom he dedicated

several of his works, was Dositheus of Pelusium, a pupil of Conon,

presumably at Alexandria though at a date subsequent to Archi-
medes' sojourn thcre.

After his return to Syracuse he lived a life entirely devoted

to mathematical research. Incidentally he made himself famous
by a variety of ingenious mechanical inventions. These things

were however merely the "diversions of geometry at play 4," and

he attached no importance to them. In the words of Plutarch, "he
possessed so high a spirit, so profound a soul, and such treasures

of scientific knowledge that, though these inventions had obtained

for him the renown of more than human sagacity, he yet would

not deign to leave behind him any written work on such subjects,
but, regarding as ignoble and sordid the business of mechanics

and every sort of art which is directed to use and profit, he placed

his whole ambition in those speculations in whose beauty and
subtlety there is no admixture of the common needs of life++ " In

fact he wrote only one such mechanical book, On Sphere-makino, _
to which allusion will be made later.

Some of his mechanical inventions were used with grea_effect
against the Romans during the siege of Syracuse. Thus he contrived

* Diodorus v. 37, 3, o0_ [ro_ _oxMa_] 'ApX¢/_ b Zvpax_r,o_ e_, Sre
_rctpl_a.ke_elsM')_r_'ov.

+ Plutarch, Marcellus, 14.
ibid. 17.

§ Pappus vlm p. 1026 (ed. Hultseh). K_g_'os 8t *ro_ qntau, _ "Apr_x_
"Apxq_41__ _'bv_O_K6¢LOVSV t_vov _MOV ovvreraX&,aLI_Xo_t_ rb K_'_ r_p,

I_X.a_,_x__o_aaOelsxa_/xeya_oep_ _'_Ve_6#evo_b Oav#ao"rb_txe_o_, _re _
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catapultsso ingeniouslyconstructeda_ to be equallyserviceable
at long or short ranges,machines for dischargingshowers of

missilesthrough holes made in the walls,and othersconsisting

of long moveable polesprojectingbeyond the wallswhich either

dropped heavy weights upon the enemy's ships,or grappled the

prows by means of an iron hand or a beak likethat of a crane,
then liftedthem into the air and letthem fallagain*. Marcellus

issaidto have deridedhis own engineersand artificerswith the

words, " Shall we not make an end of fightingagainstthisgeo-

metricalBriareuswho, sittingat easeby the sea,playspitchand

¢oss with our shipsto our confusion,and by the multitude of

missilesthat he hurlsat us outdoesthe hundred-handedgiantzof

mythology_+"; but the exhortationhad no effect,the Romans being

in such abjectterrorthat "if they did but see a pieceof rope

or wood projectingabove the wall,they would cry 'there it is

again,'declaringthatArchimedeswas settingsome engineinmotion

againstthem, and would turntheirbacksand run away, insomuch

that Marcellusdesistedfrom allconflictsand assaults,puttingall

his hope in a long siege+.''

If we are rightlyinformed,Archimedes died,as he had lived,

absorbed in mathematical contemplation. The accounKs of the
exact circumstancesof his death differin some details.Thus

Livy says simply that,amid the scenesof confusionthat followed

the captureof Syracuse,he was found intenton some figureswhich
he had drawn in the dust,and was killedby a soldierwho did

not know who he was §. Plutarchgivasmore than one versionin

the following_pa_ssage." Marcelluswas most of all afflictedat
thedeath ofVArehimedes; for,asfatewould have it,he was intent

on workingQSut some problem with a diagram and, having fixed

hismind and his eyes alikeon his investigation,he never noticed

the incursionof the Romans nor the captureof the city. And

when a soldiercame up to him suddenlyand bade him followto

" Polybius, Hist. viii. 7---8 ; Livy XXIV. 34; Plutarch, Marcellu#, 15--17.
Jr Plutarch, Marcellus, 17.
.-T-tb/d.
§ IAvy xxv. 31. Cure multa irae, multa auaritiac foeda excmpla ederentur,

Archimedem memorise prodltum e_t in tanto tumultu, quantum pauor captae
urbis in diseursu diripientium militum cierv poterat, intentum formis, quas in
puluexedes_ripserat, ab ignaro millte quis esset inteffeotum ; aegre id Marcellum
tulisse sepulturaeque euram habita_n, et propinquis etiam inqui_itis honoli
praesidloque nomen ac memoriam eius fuisse.

H.A. b
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Marcellus, he refused to do so until he had worked out his problem

to a demonstration ; whereat the soldier was so enraged that he
drew his sword and slew him. Others say that the Roman ran

up to him with a drawn sword offering to kill him; and, when

Archimedes saw him, he begged him earnestly to wait a short time

in order that he might not leave his problem incomplete and
unsolved, but the other took no notice and killed him. Again

there is a third account to the effect that, as he was carrying tc,

Marcellus some of his mathematical instruments, sundials, spheres,
and angles adjusted to the apparent size of the sun to the sight, some

soldiers met him and, being under the impression that he carrie_t

gold in the vessel, slew him*." The most picturesque version of the
story is perhaps that which represents him as saying to a Roman

soldier who came too close, "Stand away, fellow, from my diagTam, '

whereat the man was so enraged that he killed him t. The addition
made to this story by Zonaras, representing him as saying 7rap_

_¢_O_v Ka'__ 7rap_ 7pa_v, while it no doubt recalls the second

version given by Plutarch, is perhaps the most far-fetched of the
touches put to the picture by later hands.

Archimedes is said to have requested his friends and relatives

to place upon his tomb a representation of a cylinder circumscribing

a sphere within it, together with an inscription giving the ratio
which the cylinder bears to the sphere_; from which we may

infer that he himself regarded the discovery of this ratio [On th_

Sphere and Cylinder, I. 33, 34] as his greatest achievement._ Cicero,/
when quaestor in Sicily, found the tomb in a neglected state and

restored itS.

Beyond the above particulars of the life of Archimedes, we
have nothing left except a number of stories, which, though perhaps

not literally accurate, yet help us to a conception of the personality
of the most original mathematician of antiquity which we would

not willingly have altered. Thus, in illustration-of his entire

preoccupation by his abstract studies, we are told that he would

forget all about his food and such necessities of life, and would
be drawing geometrical figures in the ashes of the fire, or, when

* Plutarch, Marcellus, 19.
Tzetzes, ChiL xx.85, 135 ; Zonaras rx. 5.
Plutarch, Marcellus, 17 ad fin.

§ Cicero, TuJc. v. 64 sq.
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anointing himself, in the oil on his body I. Of the same kind is

the well-known story that, when he discovered in a bath tile

solution of the question referred to him by Hieron as to whether
a certain crown supposed to have been made of gold did not in

reality contain a certain proportion of silver, he ran naked through

the street to his home shouting _p_Ka, _p_TKa_.

According to Pappu_ +_it was in connexion with his discovery
of the solution of the problem To move a given weight by a given

.force that Archimedes uttered the famous saying, " Give me a

place-to stand on, and I can move the earth (_J_ /_o_ _ro_ _$ _a;

K,v_ r_v 7_v)." Plutarch represents him as declaring to Hieron
that any given weight could be moved by a given force_ and
boasting, in reliance on the cogency of his demonstration, that,(if

he were given another earth, he would cross over to it and move
this one) "And when ttieron was struck with amazement and asked

him to reduce the problem to practice and to give an illustration

of some great weight moved by a small force, he fixed upon a ship
of burden with three masts from the king's arsenal which had

only been drawn up with great labour and many men ; and loading

her with many passengers and a full freight, sitting himself the

while far off, with no great endeavour but only holding the end

of a compound pulley (_roA_;(r_r_taro_)quietly in his hand and pulling
at it, he drew the ship along smoothly and safely as if she were

moving through the sea§." According to Proclus the ship was one
which Hieron had had made to send to king Ptolemy, and, when all
the Syracusans with their combined strength were unable to launch
it, Archimedes contrived a mechanical device which enabled Hieron

to move it by himself, insomuch that the latter declared that
"from that day forth Archimedes was to be believed in every-

thing that he might say 'l." While however it is thus established
that Archimedes invented some mechanical contrivance for moving

a large ship and thus gave a practical illustration of his thesis,
it is not certain whether the machine used was simply a compound

Plutarch, MareeUu_, 17.
Vitruvius, Architect. ix. 3. For an explanation of the manner in whteh

Archimedes probably solved this problem, see the note following On float_g
bod/es, t. 7 (p. 259 sq.).

.* Pappus vnx. p. 1060.
§ Plutarch, Marcellus, 14.
', Proolus, Comm. on Eucl. x., p. 63 (ed. Frledlein).

b2
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pulley (Iroklo_rao_o_) as stated by Plutarch; for Athenaeus O, in

describing the same incident, says that a ]_1i_ was used. This

term must be supposed to refer to a machine similar to the KoXkla_

described by Pappus, in which a cog-wheel with oblique teeth

moves on a cylindrical helix turned by a handle_. Pappus, how-

ever, describes it in connexion with the _apov_KJ_ of Heron, and,

while he distinctly refers to Heron as his authority, he gives no

hint that Archimedes invented either the fiapov_._d¢ or the par-

ticular xoxk_a_ ; on the other hand, the _rok_r_ao_o_ is mentioned

by Galen*+, and the vp[_lrao-ro_ (triple pulley) by Oribasius§, as one

of the inventions of Archimedes, the vp_r_rao'ro_ being so called

either from its having three wheels (Vitruvius) or three ropes

(Oribasius). Neverthele_ss, it may well be that though the ship

could easily be kept in motion, when once started, by the rp_-

_ra_ro_ or _rok/_-rraaro_, Archimedes was obliged to use an appliance

similar to the Koxkla_ to give the first impulse.

The name of yet another instrument appears in connexion with

the phrase about moving the earth. Tzetzes' version is, "Give

me a place to stand on (_ fi_), and I will move the whole earth

with a xapeo.r{_ov II" ; but, as in another passage¶ he uses the word

rp[o_rao_ro_, it may be assumed that the two words represented one

and the same thing _.

It will be convenient to mention in this place the other
mechanical inventions of Archimedes. The best known is the

* kthenaeus v. 207 a-b, KaraaKevd¢a; _&p #_xa r5 v_X_o_ov _d_bo_ el_ r_v
0_Xa_=_ _a_=Te" _rp_ro_ _' 'Apx_ e_'p__ r_ _o_ _ro_v. To the
same effect is the statement of Euststhius ad ll. _. p. 114 (ed. Stallb.) M'_eva_

_" Pappus vxzz. pp. 1066, 1108 sq.

** Galen, in H_ppocr. De attic., xv. 47 (=xvm. p. 747, ed. Khhn).
§ Oribasius, Coll. reed., xmx. 22 (Iv. p. 407, ed. Bussemaker), 'Avekkt$o_ _}

"Apx_6ov_ _v_aro_, described in the same passage as having been invented

[lTzetzes,Chil,_, 130.

¶ Ibid., nx. 61, 5 "_ _v_r_ _vxav_ _'_r/_cr_r¢_ _o_v" 5_rafl_ _l ¢ra_
_ xObva.

** Heibergcompare_ Simplicius,Comm. inAri_tot._h_s. (o(I.Diels,p.1110,
]. 2), ra_r_ _ r_ _waXo'yl9 ro_ x_vo_zos _oJ, ro_ xwov/,_vov _a2 'ro_ &o.wr_/z=ros

3'6.v.
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water-screw* (also called KoxM'a_) which was apparently invented
by him in Egypt, for the purpose of irrigating fields. It wa_

also used for pumping water out of mines or from the hold of

ships.
Another invention was that of a sphere constructed so as to

imitate tile motions of the sun, the moon, and the five planets

in the _heavens. Cicero actually saw this contrivance and gives a

description of itt, stating that it represented the periods of the
moon and the apparent motion of the sun with such accuracy that

it would even (over a short period) show the eclipses of the sun
and moon. Hultsch conjectures that it was moved by water,*.

We know, as above stated, from Pappus that Archimedes wrote

a book on the construction of such a sphere (vcp_ Grqbatpolrotla_),
and Pappus speaks in one place of "those who understand the

making of spheres and produce a model of the heavens by means

of the regular circular motion of water." In any case it is certain

that Archimedes was much occupied with astronomy. Livy calls
him "unicus spectator caeli siderumque." Hipparchus says§,
"From these observations it is clear that the differences in the

years are altogether small, but, as to the solstices, I almost

think (o_K d_rtXTrl_¢o)that both I and Archimedes have erred to

the extent of a quarter of a day both in the observation and in the
deduction therefrom." It appears therefore that Archimedes had

considered _he question of the length of the year, as Ammianus

also states _. Macrobius says that he discovered the distances of
the planets¶. Archimedes himself descrihes in the Sand-reckoner

the apparatus by which he measured the apparent diameter of the
sun, or the angle subtended by it at the eye.

The story that he set the Roman ships on fire by an arrange-

ment of burning-glasses or concave mirrors is not found in any

Dmdorus i. 34, v. 87; Vitruvius x. 16 (11); Philo HI. p. 330 (ed. Pfeiffer);
Strabo xvn. p. 807 ; Athenaeus v. 208 f.

Cicero, De rep., L 21--22 ; Tusc., i. 63; De nat. deor., If. 88. Cf. Ovid,
• "astt, vx. 277; Lactantius, Instit., H. 5, 18 ; Martianus CapeUa, H. 212, yr.
583 sq. ; Claudian, Fpigr. 18 ; Sextus Empiricus, p. 416 (ed. Bekker).

$ Zeftschriftf. Math. u. Phys_k (hzst. litt. Abth.), xxII. (Ig77), 10(; sq.
§ Ptolemy, _6vra_t_, L p. 1,53.
II Ammianus MarceU.,xxvl. i. 8.
¶ Macrobius, in Somn. 8eip., u. 3.
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authorityearlierthan Lucian°; and the so-cMledloculusArchi-

medius, which was a sort of puzzle made of 14 pmces of ivory of
different shapes cut out of a square, cannot be supposed to be his

invention, the explanation of the name being perhaps that it was

only a method of expressing that the puzzle was cleverly made,

in the same way as the _rp_fl)_ltta 'Apxqx_l_E,ov came to be simply
a proverbial expression for something very difllcultt.

" The same story is told of Proelus in Zonaras xxv. 3. For the other
references on the subject see Heiberg's Quaest_onesA rch_medeae, pp. 39-41

t Cf. also Tzetzes, Chil. xm 270, ra3_'Apxtttii_ov_U_7Xa_'_vXpelav(X_.



CHAPTER II.

MANUSCRIPTS AND PRINCIPAL EDITIONS----ORDEROF

COMPOSITION--DIALECT--LOST WORKS.

THZ sources of the text and versions are very fully described
by Heiberg in the Prolegomena to Vol. III. of his edition of Archi-

medes, where the editor supplements and to some extent amends

what he had previously written on she same subject in his dis-

_ertation entitled Quaestiones Archimedeae (1879). It will there-
fol_e suffice here to state briefly the main points of the discussion.

The MSS. of the best class all had a common origin in a MS.

which, so far as is known, is no longer extant. It is described

in one of the copies m_le from it (to be mentioned later and dating
from some time between A.D. 1499 and 1531) as 'most ancient'

Orakatovdrov), and all the evidence goes to show that it was written
as early as the 9th or 10th century. At one time it was in the

possession of George Valla, who taught at Venice between the
years 1486 and 1499 ; and many important inferences with regard

to its readings can be drawn from some translations of parts of

Archimedes and Eutocius made by Valla himself and published
in his book entitled de expetendis et fuglezMis rebus (Venice, 1501).

It appears to have been carefully copied from an original belonging
to some one well versed in mathematics, and it contained figures

drawn for the most part with great care and accuracy, but there
was considerable confusion between the letters in the figures and

those in the text. This 3iS., after the death of Valla in 1499,

became the property of Albertus Pius Carpensis (Alberto Pio,

prince of Carpi). Part of his library passed through various hands
and ultimately reached the Vatican; but the fate of the Valla
MS. appears to have been different, for we hear of its being in

the Possession of Cardinal Rodolphus Plus (Rodolfo Pio), a nephew

of Albertus, in 1544, after which it seems to have disappeared.
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The three most important MSS. extant are:

F (=Codex Florentinus bibliothecae Laurentianae Mediceae

plut_i xxvm. 4to.).

B (= Codex Parisinus 2360, olim Mediceus)

C (= Codex Parisinus 2361, Fonteblandensis).

Of the_ it is certain that B was copied from the Valla 5IS.

This is proved by a note on the copy itself, which states that the

archetype formerly belonged to George Valla and afterwards t<,
Albertus Plus. From this it may also be inferred that B was

written before the death of Albertus in 1531; for, if at the date

of B the Valla MS. had passed to Rodolphus Plus, the name of
the latter would presumably have been mentioned. The note re-

ferred to also gives a list of peculiar abbreviations used in the

archetype, which list is of importance for tile purpose of com-

parison with F and other MSS.

From a note on C it appears that that 5IS. was written by
one Christophorus Auverus at Rome in 1544, at the expense of

Georgius Armagniacus (Georges d'Armagnac), Bishop of Rodez,

then on a mission from King Francis I. to Pope Paul III. Further,
a certain Guilelmus Philander, in a letter to Francis I. published

in an edition of Vitruvius (1552), mentions that he was allowed,

by the kindness of Cardinal Rodolphus Plus, acting at the instance
of Geor_us Armagniacus, to see and make extracts from a volume

of Archimedes which was destined to adorn the library founded
by Francis at Fontainebleau. He adds that the volume had been

the property of George Valla. We can therefore hardly doubt

that C was the copy which Georgius Armagniacus had made in

order to present it to the library at Fontainebleau.
Row F, B and C all contain the same works of Archimedes

and Eut_cius, and in the same order, viz. (1) two Books de sptmera

et cyKndro, (,2) de d;mens4one cb'cuK, _5_ d_ conoid_bus, (_) d_

linei$ slairal_ , (5) de planis aeque ponderantibus, (6) arenarius,
(7) quadratuva parabola, e, and the commentaries of Eutocius on

(1) (2)and (5). At the end of the quadratura para, bolae both
F and B give the following lines:

[_rvxo;_l_ X_ov 7_dF_rpa

voh.ko_ *_ Xvt:dflat,'ra_ "[o_._lrok_ _Iva'rc Fo(_o'at¢.

F and C also contain mensurae from Heron and two fi_gments

wpl o_raSp_3v and vtpl I_rpo_v, the order being the same in both
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and the contents only differing in the one respect that the last

fragment _r_pl i_&p_, is slightly longer in F than in C.

A short preface to C states that the first page of the archetype
was so rubbed and worn with age that not even the name of

Archimedes could be read upon it, while there was no copy at

Rome by means of winch the defect could be made good, and

further that the last page of tieron's de mensuris was similarly
obliterated. Now in F the first page was apparently left blank

at first and afterwards writ_n m by a different hand with many
gaps, while in B there are similar deficiencies and a note attached

by the copyist is to the effect that the first page of the archetype

was indistinct. In another place (p. 4 of Vol. m., ed. Heiberg)
all three MSS. have the same lacuna, and the scribe of B notes

that one whole page or even two are missing.
Now C could not have been copied from F because the last

page of the fragment _rcpi /_irpcov is perfectly distinct in F; and,

on the other hand, the archetype of F must have been ille_ble

at the end because there is no word r_)_o_at the end of F, nor any
other of the signs by which copyists usually marked the completion

of their task. Again, Vall£s translations show that his MS. had

certain re_Mings corresponding to correct readings in B and C
instead of incorrect rea_-iings given by F. Hence ]7 cannot ha_e
been Valla's MS. itself.

The positive evidence about F is as follows. Valla's trans-

lations, with the exception of the few readings just referred to,
agree completely with the text of F. From a letter written at

Venice in 1491 by Angelus Politianus (Angelo Poliziano) to Lau-
rentius Mediceus (Lorenzo de' Medici), it appears that the former

had found a MS. at Ve.nice containing works by Archimedes and

Heron and proposed to have it copied. As G. Valla then lived
at Venice, the MS. can hardly have tmen any other but his, and

no doubt Y _as actuall)" copmd _rom it in 1_91 or soon after.
Confirmatory evidence for this origin of F is found in the fact
that the form of most of the letters in it is older than the 15th

century, and the abbreviations etc., while they all savour of an

ancient archetype, agree marvellously with the description which
the note to B above referred to gives of the abbreviations used

in Valla's MS. Further, it is remarkable that the corrupt passage

corresponding to the illegible first page of the archetype ju_st takes
up one page of F, no more and no less.
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The natural inference from all the evidence is that F, B and

C all had their orion in the Valla MS. ; and of the three F is

the most trustworthy. For (1) the extreme care with which the

copyist of F kept to the original is illustrated by a number of
mistakes in it which correspond to Valla's re'axtings but are cor-

rected in B and C. and (2) there is no doubt that the writer of

B was somewhat of an expert and made many alterations on his

own authority, not always with success.
Passing to other MSS., we know that Pope l_'icholas V. had

a MS. of Archimedes which he caused to be translated into Latin.

The translation was made by Jacobus Cremonensis (Jacopo Cas-

siani_), and one copy of this was written out by Joannes Regio-
montanus (Johann Muller of Konig._berg, near Ha.ssfurt, in Fran-
conia), about l t61, who not only noted in the margin a number
of corrections of the I_tiu but added also in many places (}reek

readings from another MS. This copy by l_egiomontanus is pre-
served at l_-urnberg and was the source of the Latin translation

given in the ed_tio princeps of Thomas Gechauff Venatorius (Basel,
1544); it is called .Nb by Heibcrg. (Another copy of the same
translation is alluded to by Regiomontanus, and this is doubtless
the Latin MS. 327 of 15th c. still extant at Venice.) From the
fact that the translation of Jacobus Cremonensis has the same

lacuna as that in F, B and C above referred to (Vol. HI., ed.

Heiberg, p. 4), it seems clear that the translator had before him

either the Valla MS. itself or (more likely) a copy of it, though
the order of the books in the translation differs in one respect
from that in our MSS., viz. that the arenarius comes after instead

of before the qz_adratura parabolae.

It is probable that the Greek MS. used by Regiomontanus was V

(= Codex Venetus Marcianus cccv. of the 15th e.), which is still extant
and contains the same books of Archimedes and Eutocius with the

same fragment of Iteron as F has, and in the same order. If the
above conclusion that F dates from 1491 or thereabouts is correct,

then, as V belonged to Cardinal Be_ssarione who died in 1472, it

cannot have been copied from F, and the simplest way of accounting

for its similarity to F is to suppose that it too was derived from
Valla's MS.

° Tiraboschi, Storia della Letteratura Itahana, Vol. vl. Pt. 1 (p. 358 of the
editmn of 1807). Cantor (Vorlesungen hb. Gesch. d. Math., xI. p. 192) gives the
full name and title as Jacopo da S. Cassiano Cremonese canomeo rogolare.
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Regiomontanus mentions, in a note inserted later than the
rest and in different ink, two other Greek MSS., one of which he

calls "exemplar vetus apud magistrum Paulum." Probably the
monk Paulus (Albertini) of Yenice is here meant, whose date was

1430 to 1475; and it is possible that the "exemplar vetus" is
the MS. of Valla.

The two other inferior MSS., viz. A (= Codex Parisinus 2359,

olim Medieeus) and D (= Cod. Parisinus 2362, Fonteblandensis),
owe their origin to V.

It is next necessary to consider the probabilities as to the MSS.

used by Nicolas Tartaglia for his Latin translation of certain of
the works of Archimede._ The portion of this translation published
at Venice in 1543 contained the books de centrls gravium vel de

aequerepentibu.* [-II, tetragonismus [parabolae], dimensio cireull
and de insidentlbus _luae I; the rest, consisting of Book I] de

inslden_ibus aquae, was published with Book I of the same treatise,
after Tartaglia's death in 1557, by Troianus Curtius (Venice, 1565).
.N'ow the last-named treatise is not extant m any Greek MS. and,

as Tartaglia adds it, without any hint of a separate origin, to the
rest of the books which he says he took from a mutilated and

almost illegible Greek MS., it might easily be referred that the
Greek MS. contained that treatise also. But it is established, by

a letter written by Tartaglia himself eight years later (1551) that
he then had no Greek text of the Books cl_ insiden_ibus aquae, and

it would be strange if it h'oxt disappeared in so short a time without
leaving any trace. Further, Commandinus m the preface to his

edition of the same treatise (Bologna, 1565) shows that he had
never heard of a Greek text of it. Hence it is most natural to

suppose that it reached Tartaglia from some other source and in the

Latin translation only*.
The fact that Tartaglia speaks of the old MS. which he used

as "fracti et qui vix legi poterant libri," at practically the same
time as the writer of the preface to C was giving a similar de-

scription of Valla's MS., makes it probable that the two were

* The Greek fragment of Book i., v_p_ r_v _am t_ra_ucau _ Irepl r&u
5Xov_v, edited by A. Ms1 from two Vatman MSS. (C/asszc_suet. L p. 426-30 ;
Vol. n. of Heibcrg's edition, pp. 856-8), seems to be of doubtful authenticiSy.
Except for the first proposition, it contains enunciations only and no proofs.
Hmberg is inclined to think that it represents an attempt at retranslation into
Greek made by some mediaeval scholar, and he compares the similar attempt
nlade by Rivault.
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identical ; and this probability is confirmed by a considerable agree-
ment between the mistakes in Tartaglia and in Valla's versions.

But in the case of the quaclratura parabolae and the dimensio

clrculi Tartaglia adopted bodily, without alluding in any way to
the source of it, another Latin translation published by Lucas

Gauricus "Iuphanensis cx regno Neapolitano" (Luca Gaurico of
Gifuni) in 1503, and he copied it so faithfully as to reproduce most

obvious errors and perverse punctuation, only filling up a few

gaps and changing some figures and letters. This translation by
Gauricus i_ seen, by means of a comparison with Valla's readings
and with the translation of Jacobus Cremonensis, to have been

made from the same MS. as the latter, viz. that of Pope Nicolas V.
Even where Tartaglia used the Valla MS. he does not seem

to have taken very great pains to decipher it when it was

not easily legible--it may be that he was unused to deciphering
MSS.--and m such ca_es he did not hesitate to draw from other

sources. In one place (de planer, equilib. Ix. 9) he actually

gives as the Archimedean proof a paraphrase of Eutocius some-

what retouched and abridged, and in many other in_tance_ he
has inserted corrections and interpolations from another Greek

MS. which he once names. This MS. appears to have been a copy

made from F, with interpolations due to some one not unskilled
in the subject-matter; and this interpolated copy of F was ap-

parently also the source of the lqurnberg MS. now to be mentioned.
N _ (= Codex Norimbergensis) was written in the 16th century

and brought from Rome to Nurnberg by Wilibald Pirckheymer.
It contains the same works of Archimedes and Eutocius, and in

the same order, as F, but was e_idently not copied from F direct,

while, on the other hand, it agrees so closely with Tartaglia's

version as to suggest a common origin. N _ was used by Vena-
torius in preparing the editio pvi_vceps, and Venatorius corrected

many mistakes in it with his own hand by notes in the margin

or on slips attached thereto; he also made many alterations in

the body of it, erasing the original, and sometimes wrote on it

directions to the printer, so that it was probably actually used
to print from. The character of the MS. shows it to belong to
the same class as the others; it agrees with them in the more

important errors and in having a similar lacuna at the beginning.
Some mistakes common to it and F alone show that its source was

F, though at second hand, as above indicated.



EDITIONS AND TRANSLATIONS. xxlx

It remains to enumerate the principal editions of the Greek
text and the published Latin versions which are based, wholly or

partially, upon direct collation of the MSS. These are as follows,
in addition to Gaurico's and Tartaglia's translations

1. The editlo princeps published at Basel in 1544 by Thomas

Gechauff Venatorius under the title Arct_imedis opera quae quidem
e.v_¢tantomnia nunc ]yrimum graece et latine in lucem edita. Adlecla

quoque _ent Eatocii Asca/onitae comme_taria it_ra graece et latine
n_e_tuam antea excusa. The Greek text and the Latin version in
this edition were taken from different sources, that of the Greek

text being _'_, while the translation was Joannes Re_omontanus'

revised cop] (N b) of the Latin version made by Jacobu._ Cremo-
nensis from the MS. of Pope Nicola_ V. The revision by

Regiomontanus wa_ effeeted by the aid of (1) a_mther copy of
the same translation still extant, (2) other Greek MSS., one of

which was probably V, while another may have been Valla's MS.
itself.

2. .4. translation by F. Commandinus (containing the following
works, circuli dimensio, de li_w.ls ap_ralibu.,, quadratura parabolae,

de conoidibus et sphaeroidibus, de areTeae nu_ro) appeared at
Venice in 1558 under the title Archimedis opera _wnnull_ in
latinum conversa et cem_mentariis illustrata. For this translation

several MSS. were used, among which was V, but none preferable

to those which we now possess.

3. D. Rivault's edition, Archimedis o2_ra quae exstant graece
et latine novis derno_str, et comment, illustr. (Pariq, 1615), _dves

only the propositions in Greek, while the proofs are in Latin and
somewhat retouched. Rivault followed the Basel editio princeps
with the assistance of B.

4. Torelh's edition (Oxford, 1792) entitled 'ApX_$ov_ _h ac_-
_()ftt_a ftt'Td l"t_y E_l-OKlOV "AqKaJ_OJV[TOV_'Trols.v'qfta'roJv,Archimedis

quae s_per.nent omnia cure Eutocil Ascalonitae commentarii$ ex
recensione ]. Torelli Yeronensis cure nova versione latina. A cced-
unt lectiones variantes ex todd. Mediceo et Parisiensibus. Torelli

followed the Basel editio princeps in the main, but also collated

V. The book was brought out after Torelli's death by Abram
Robertson, who added the collation of five more MSS., F, A, B, C, D,
with the Basel edition. The collation however was not well done,

and the edition was not properly corrected when in the press.
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5. Last of all comes the definitive edition of Heiberg (Archi

medls opera om_ia cure commentariis Eutocii. J_' codice JFl_rren_ino
recemruit, Latine uertit notisque illustrauit J. L. Heiberg. Leipzig,

1880--1).
The relation of all the MSS. and the above editions and trans-

lations is well shown by Heiberg in the following scheme (with
the omission, however, of his own edition):

Codex Uallae saee. _x--x

_Cod. Nlcolal V _ Talzalea ¥ B C
c. 1453 c. 1491 a. 1543 saea xv c. 1500 a. 15tt

Cod. Tartaleae H [ _d '_Rlualh
] { a. 1615

N a saeo, xvI - J,

I A, D Commandinu_
Ed. Basil. 15t4 saeo. xw 1558

Torelhus 1792

(}auricus Cremonensis c. 1460

Cod. Ueuet. 327 Nb, c. 1461
sa_c. xv

The remaining editions which give portions of Archimedes in
Greek, and the rest of the translations of the complete works or

parts of them which appeared before Heiberg's editmn, were not
based 'upon any fresh collation of the original sources, though some
excellent corrections of the text were made by some of the editors,

notably Wallis and Nizze. The following books may be mentioned.

Joh. Chr. Sturm, Des unvergleichlichen Archimedis .Kunstbucher,

ul)ersetzt und erlautert (Nurnberg, 1670). This translation em-
braced all the works extant in Greek and followed three years

after the same author's separate translation of the _b'and_eckoner.

It appears from Sturm's preface that he principally used the edition
of Ri_ ault.

Is. Barrow, Opera Archimedis, Apollonii Pergaei conicorum libri,

Theodosii sphaerica methodo novo illustrata et demonstra_a (London,
1675).

Wallis, Archimedis arenarius et dime_io circuli, Eutocii in hanc

commentarii cure versio_ et notis (Oxford, 1678), also _ven
in Wallis' Opera, ¥ol. m. pp. 509--546.

Karl Friedr. Hauber, Archimeds zwei Bizcher ikber K_gel und

Cylinder. Ebendesselben Kreismessung. Uebersetzt mit Anmerku_gen

u. s. w. begleitet (Ttibingen, 1798).
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F. Peyrard, (T, uvre_ d'Archim_de, traduites litt_'alement, avec

un commentaire, suivies d'un m_mo_re du tradueteur, sur un nouveau

mir(nr ardent, et d'_n autre m_m_re de _][. Delamt, re, cur l'arith-

.m_tique des Orecs. (Second edition, Paris, 1808.)

Ernst Nizze, A rchiu_edes yon Syrakus vorhandeae Werke, aua dem

Griechischeu ubersetzt und mit erlauternden und kritischen Anmer-

kungen begleitet (Stralsund, 182i).

The MSS. give the several _reatises in the following order.

1. _cp'_ o-q_afpa_ Ka'¢ KvMv3pov a" if, two Books 0,_ the. Spher_

and Cylinder.

2. x_xkov _rpTlo'_ _, 3[easure,,ent of a Circle.

3. _rcp[ Kwvoct3_tov xa[ o'_atpoct3_tar, On Cono_ls and Sj_]_eroid,_.

4. lrep'_ dX&_v, Oa Spirals.

5. _wtv_Scov _croppo_rL_v a" ff _(, two Books O,t the Equilibrium

of 1)lanes.

6. tbatz_dv'q_, T/_e b'and-rec']voner.

7. TEvpayon, t(rlzS_ _rapa/3oX_ (a name substituted later for that

given to the treatise by Archimedes himself, which must

undoubtedly have been v{rpayo)vta_ _ _o_ dpOoywv[ov

xduov vo_ ++), Quadrature of the Parabola.
To these shouhl be added

8. _r_p'_ 3Xowz_v(ou §, the Greek title of the treatise On .floating

bodies, only preserved in a Latin translation.

Pappus alludes (L p. 312, ed. Hultsch) to the _5_Xov_drpva_ in the words

_v _'_ *rebqr_ ro_ xOKXovvrep_q_pela_.
Archimedes hnmself twice alludes to properues proved in Book I as

demonstrated dv yogi /_yXaV_xo_ (Quadrature of the Parabola, Props. 6, 10).

Pappus (vm. p. 1034} quotes ra'ApX_ov_ ,r_i icroppo_nDv. The beginmng of
Book L is also cited by Proclus in his Commentary o_*Eucl. L, p. 181, where the

readang should be too g laopOo_a6_,,and not rosy du_aop#omdv (Hultsch).

The name ' parabola' was first applied to the curve by Apollonius. Arch_-
mede_ always used the old term ' section of a right-angled cone.' Cf. Eutocms

(Heiberg, vol. nL, p. d42) _t_ra_ t_ r_ _'epl r_ _'o_ 6pOog/owIovxdwou ro_@_.
§ This title corresponds to the refmeaces to the book m Strabo L p. 54

('A_x_s $v rd* _re_ r_7_6Xov_v) and Pappus VIii. p. 1024 (&S'Apx_

6Xov/,d_o_).The fragment editedby Mai has a longertitle,_replr_ OSar_
_q_taraV_to_ ¢__r_# r_, 6Xov_g_,_ap,where the first part corresponds to Tartaglm's

version, de iasi_e.nt_bv., aquae, and to that of Commandinus, de iis quae vehum

tur in aqua. But Archimedes intentionally used the more general word 6-7pbv
(fluid)insteadof I)_g ; and henoe the shorter t*tle _re# 6Xov/Mwav, de ti# quae

tn humido vehuntur (Torelii and Heiberg), seems the better.
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The books were not, however, written in the above order ; and

Archimedes himself, partly through his prefatory letters and partly

by the use in later works of properties proved in earlier treatises,

gives indications sufficient to enable the chronological sequence
to be stated approximately as follows:

1. On the equilibrium of planes, I

2. Quc_lrature of the Parabola.

3. On the equilibrium of planes, II.

4. On the Sphere a_d Cylinde% I, II.

5. On _)firal*.

6. On Conoids and Spheroids.

7. On floating bodies, I, II.

8. 3[easurement _f a circle.

9. The Sand-recko_zvr.

It should however be observed that, with regard to (7), no
more is certain than that it was written after (6), and with regard

to (8) no more than that it wa_ later than (4) and before (9).
In addition to the above we have a collection of Lemmas (Libe.r

Ass,_mptorum) which has reached us through the Arabic. The
collection was first edited by S. Foster, Miscellanea (London, 1659),

and next by Borelli in a book published at Florence, 1661, in

which the title is given as Liber assumptorum Archimedla interprete
Thebit ben Kora et exponente doctore Almochtasso Abilhasan. The

Lemmas cannot, however, }rave been writ_n by Archimedes in

their present form, because his name is quoted in them more than

once. The probability is that they were propositions collected by
some Greek writer * of a later date. for the purpose of elucidating

some ancient work, though it is quite likely that some of the

propositions were of Archimedcan origin, e.g. those concerning

the geometrical figures called respectively o_ofl_.o_t (literally

• It would seem that the compiler of the Liber A,sumptorura must have
drawn, to a considerable extent, from the same sources as Pappus. The
number of propomtions appearing substantially in the same form in both
collections is, I think, even greater than has yet been noticed. Tannery (La
G6o_trte grecque, p. 162) mentions, as instances, Lemmas 1, 4, 5, 6 ; but it
will be seen from the notes m this work that there are eeveral other coin-
cidences.

Pappua gives (p. 208) what he calls an 'ancient proposition' (dpx_da
_rp6rtwL_)aboutthesame figure,whichhe describesas X_#o_,_ _//Kaho_r_v
•Ipfl_Tkov,Cf.thenotetoProp.6(p.308).The meaningofthewordisgathered



WORKS ASCRIBED TO ARCHIMEDES. xxxiii

' shoemaker's knife') and o'd,ktvov (probably a ' salt-cellar'e), and

Prop. 8 which bears on the problem of trisecting an angle.

from the Scholia to Nzcander, Thertaca, 423: _pfl*IXotM-rorrtu _'& rv_Xorefr_

c,_txa, o_ ol _wro'r6pot r_tvot,_t ral /_ot,_t r& _pp_.ra. Cf. Hesychius,

* The best authorities appear to hold that in any case the name _dktvov was
not applied to the figure m questton by Archimedes himself but by some later
writer. Subject to this remark, I believe ct_)._,ou to be simply a Graecised
form of the Latin word sahnum. We know that a salt-cellar was an essential

part of the domestic apparatus in Italy from the early days of the Roman
Republic. "All who were raised above poverty had one of silver which
descended from father to son (Her., Carts. H. 16, 13, Lie. xxvL 36), and
was accompanied by a sliver patella which was used together with the salt-
cellar in the domestic sacrifices (Pers. m. 24, 25). These two articles of
silver were alone compatible with the simplicity of Roman manners in the
early times of the Repubh¢ (Plin., H. N. xxxin. § 153, Val. Max. Iv. 4, § 3).

In shape the _ahnum was probably in moqt cases a round shallow bowl"
[Dzct. of Greek and Roman .4nt_qmtzes, article salinum]. Further we have
in the early chapters of Mommsen's Htstor_j of Rome abundant ewdence
of similar transferences of Latin words to the Slcflmn dialect of Greek. Thus

(Book z, ch. xin.) it is shown that, in consequence of Latmo-Szcihan com-
merce, certain words denoting measures of wetghL hbra, triers, quadrans,

se:ctaus, uncia, found their way into the common speech of Sicily in the third
century of the city under the forms Xlr/_z, rp_, re'rp_, i_, 0_rla. Similarly
Latin law-terms (ch. xi.) were transferred; thus mutuum (a form of loan)
became /_oTrov, career (a prison) rdprapov. Lastly, the Latin word for lard,
_trvtna, became in Sieihan Greek _p_lr:7, and patina (a dish) _rar_. The last
word is as close a parallel for the supp.sed transfer of sal_num as could be
wished. Moreover the explanataon of _tt),t_o_ as sahnum has two obvious
advantages in that (1) it does not require any alteration in the word, and

(2) the resemblance of the lower curve to an ordinary type of salt-cellar is
evident. I should add, as confirmation of my hypothesis, that Dr A. S. Murray,
of the British Museum, expresses the opinion that we cannot be far wrong m
accepting as a salinum one of the small silver bowls in the Itoman mtmstermm

H,A. C
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Archimedes is further credited with the authorship of the

Cattle-problem enunciated in the epigram edited by I.essing in

1773. According to the heading prefixed to the epigram it was

communicated by Archimedes to the mathematicians at Alexandria
in a letter to Eratosthenes e. There is also in the Scholia to Plato's

Charmldes 165 _. a reference to the problem "called by Archimedes

the Cattle-problem" (r_ Kk_O_v _r" 'Apx_F_ov_ [3oc_v 7rp_flK_l_a ).

The question whether Archimedes really propounded the problem,

or whether his name was only prefixed to it in order to mark the

extraordinary difficulty of it, has been much debated. A complete

account of the arguments for and against is given in an article

by Krumbiegel in the Zeitsc£rift fur ._athematik und Physik

(Ilist. litt. Abtheilung) xxv. (1880), p. ]21 sq., to which Amthor

added (/b/d. p. 153 sq.) a discussion of the problem itself. The

general result of Krumbiegel's investigation is to show (1) tbat

at the Museum which was found at Chaourse (Aisne) in France and is of a
section sufficiently like the curve in the Sallnon.

The other explanations of adk_vo_ which have been sqgge_ted are as follows.

(1) Cantor connects it with adXov, "das Schwanken des-hohen Meeres,"
and v_ould presumably translate it as wave-hne. But the resemblance is
not altogether satisfactory, and the termination -_ov ]you'd need explanation. "

(2) Heiberg says the word is "sine dubio ab Arahlbus deprauatum," and

suggests that it should be _ov, parsley ("ex similitudine frondis apii").
But, whatever may be thought of the resemblance, the theory that the word is
corrupted is certainly not supported by the analogy of _{pfl_),o__hmh is correctly
reproduced by the Arabs, as we know from the passage of P_ppus referred to in
the last note.

(3) Dr Gow suggests that _dMvov may be a ' mere,' comparing adka_. But
this guess is not supported by any evidence.

* The heading is, IIp6flk_a _Trep 'ApxL/_tT_ _v _rre'_pd/_aaL_ eSp&v roT_ _

'A)_e_a_pel 9 Tep', ra_ra _rpaT_arevo_,o_ _yre?u d_r&rre,ke_ _,_ v_ rpS_ 'EparoaO_v

vSv Kv_va?o_ _v_rok_. Heiberg translates th_s as "the problem which
Archimedes discovered and sent in an epigram in a letter to Eratosthenes."

He admits however that the order of words is against th_s, as _s also the use of

the plural e'_r_,pd_tftaa_v. It is clear that to take the two expressions t_
_r_Tf_up_¢_v and $_ tr_arok_ as both following _lr_rre$key is very awkward. In
fact there seems to be no alternative but to translate, as Krumb_egel does, in
accordance with the order of the words, "a problem which Archimedes found

among (some) epigrams and sent. in his letter to Eratosthenes" ; and this sense
_s certainly unsatisfactory. Hultsch remarks that, though the m_stake _rpa7-
$_arov_b,o_ for ,rpa'},_aT_vougvo_ and the composition of the heading as a whole
betray the hand of a writer who lived some centuries after Archimedes, yet he
must have had an earlier source of information, because he could hardly have
invented the story of the letter to Eratosthenes.



WORKS ASCRIBED TO ARCHIMEDES. XXXV

the epigram can hardly have been written by Archimedes in its

present form, but (2) that it is possible, nay probable, that the

problem was in substance ori_nated by Archimedes. Hultsch* has
an ingenious suggestion as to the occasion of it. It is known that

Apollonius in his o;a'vrSK,ov had calculated a closer approximation to
the value of _r than that of Archimedes, and he must therefore have

worked out more difficult multiplications than those contained in

the Measurement of a circle. Also the other work of Apollonius
on the multiplication of large numbers, which is partly preserved

in Pappus, was inspired by the Sand-reckoner of Archimedes ; and,

though we need not exactly regard the treatise of Apollonius as

polemical, yet it did in fact constitute a criticism of the earlier
book. Accordingly, that Archimedes should then reply with a

problem which involved such a manipulation of immense numbers
as would be difficult even for Apollonius is not altogether outside
the bounds of possibility. And there is an unmistakable vein of

satire in the opening words of the epigram "Compute the number
of the oxen of the Sun,_giving thy mind thereto, if thou hast a

share-of wisdom," in the transition from the first part to the

second where it is said that ability to solve the first part would
entitle one to be regarded as "not unknowing nor unskilled in

numbers, but still not yeti to be numbered among the wise," and

again in the last lines. Hultsch concludes that in any case the
problem is not much later than the time of Archimedes and dates

from the beginniug of the 2rid century _.c. at the latest.

Of the extant books it is certain that in the 6th century a.D.

only three were generally known, viz. Ou the Sphere and Cylinder,
the Measuremeut of a circle, and On the equilibrium of planes. Thus

Eutocius of Ascalon.who wrote commentaric_ on these works only
knew the Quadrature of the Parabola by name and had never seen

it nor the book On Spirals. Where passages might have been

elucidated by _eferences to the former book, Eutocius gives ex-
planations derived from Apollonius and other sources, and he

speaks vaguely of the discovery of a straight line equal to the
circumfereqce of a given circle "by means of certain spirals,"

whereas, if he had known the treatise On Spirals, he would have

quoted Prop. 18. There is reason to suppose that only the three
treatises on which Eutocius commented were contained in the

• Pauly-Wissowa's lieal.Encyclopddie, xx.1, pp. 531, 5.

c2
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ordinary editions of the time such as that of Isidorus of Miletus,

the teacher of Eutocius, to which the latter several times allude&

In these circumstances the wonder is that so many more books

have survived to the present day. As it is, they have lost to a

considerable extent their original form. Archimedes wrote in the

Doric dialect °, but in the best known books (On the £_]_ere and

Cylinder and the Measurement of a circD) practically all traces

of that dialect have disappeared, while a partial loss of Doric forms

has taken place in other books, of which however the Sand-

rec]_oner has suffered least. Moreover in all the books, except the

Sand-reckoz_r, alterations and additions were first of all made by

an interpolator who was acquainted with the Doric dialect, and

then, at a date subsequent to that of Eutocius, the book 0r_ the

Sphere and Cylinder and the Measurement of a circle were completely

recast.

Of the lost works of Archimedes the following can be identified.

1. Investigations relating to polyhedra are referred to by"

Pappus who, after alluding (v. p. 352) to the five regular polyhedra,

gives a description of thirteen others discovered by Archimedes

which are semi-regular, being contained by polygons equilateral

and equiangular but not similar.

2. A book of arithmetical content, entitled dpxM Princ_ple_

and dedicated to Zeuxippus. We learn from Archimedes himself

that the book dealt with the nami_g (f numbers (rarov_p_e_ v_v

dpt6p_v)t and expounded a system of expressing numbers higher

* Thus Eutoeius in hm commentary on Prop. 4 of Book IL On the Sphere

and Cylinder speaks of the fragment, whmh he found in an old book and whmh

appeared to him to be the mmsmg supplement to the proposition referred to,

as "preserving in part Archimedes' favourite Doric dialect" (& /L(p_t _t r_v

"Apxt_$e_ ¢flX_l_At_#_a 7X&a_av _t_r_a_ov). From the use of the expression _v
gdpet Heiberg concludes that the Doric forms had by the time of Eutoems

begun to disappearin the books which have come down to us no lessthanin
the fragmentreferredto.

_"Observingthat in allthe referencesto thiswork m the Sand-reckoner

Archimedesspeaksofthe_aming ofn_mbersorofnumberswhwh arenamed orhave

their names (h_.Ots.olxart_ogaol_vo_, r_, 5vb_ra _XO_,r_,r&¢ xararagaJ_tav t_rovres),

Hultsch (Pauly-Wissowa's l_eal-g_cyclopRd_e, xI. 1, p. 511) speaks of xaro_6-

_ r_7_ _t_/_a_ as the name of the work ; and he explains the words r_&s r&_

&pxa_s <'_p_O/_> r_v Karo_o_J_a_ _X6_ro_ as meaning "some of the
numbers mentioned at the beginmr_l which have a special name," where "at
the beginning" refers to the passage in which Archimedes first mentions r&_
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than those which could be expressed in the ordinary Greek no-
tation. This system embraced all numbers up to the enormous

figure which we should now represent by a 1 followed by 80,000

billion ciphers ; and, in setting out the same system in the Sand-
reckoner, Archimedes explains that he does so for the benefit of

those who had not had the opportunity of seeing the earlier work
addressed to Zeuxippus.

3. 7rcp't_vT_v, On balances or levers, in which Pappus says (vm.
p. 1068) that Archimedes proved that "greater circles overpower

(xaraKparo_t) lesser circles when they revolve about the same
centre." It was doubtless in this book that Archimedes proved

the theorem assumed by him in the Quadrature of t]_ Parabola,

Prop. 6, viz. that, if a body hangs at rest from a point, the centre
of gravity of the body and the point of suspension are in the same
vertical line.

4. Kfvrpo_aptK_, On centres ofgrawty. This work is mentioned

by Simplicius on Aristot. de cae[o II. (Scholia in Arist. 508 a 30).
Archimedes may be referring to it when he says (On _he equilibrium

of planes L 4) that it has before been proved that the centre of

gravity of two bodies taken together lies on the line joining the
centres of gravity of the separate bodies. In the treatise On

_oatiT_ bodies Archimedes assumes that the centre of gravity of a
segment of a paraboloid of revolution is on the axis of the segment

at a distance from the vertex equal to ._rds of its length. This
may perhaps have been proved in the KEvrpoflap_Kd, if it was

not made the subject of a separate work.

Doubtless both the _rcp_ _3v and the KEv'rpo_aptP¢_preceded
the extant treatise On the equilibrium of planes.

5. _To_rp_Kd, an optical work, from which Theon (on Ptolemy,
Synt. L p. 29, ed. Ha]nm) quotes a remark about refraction.

Cf. OIympiodorus in Aristot. Meteor., H. p. 94, ed. Ideler.

_o_. But _ dpX_ seems a less natural expression for "at the beginmng"
than $_ eipX_ or xgr' dpXd_ would have been. Moreover, there being no
participial expression except _aro_o#aY;icu,t_XS_rw_to be taken with $_dpXa_sin
this sense, the meaning would be unsatisfactory ; for the numbers are not
nan_ed at the beginning, but only referred to, and therefore some word like
d_ should have been used. For these reasons I think that Heiberg0
Cantorand Susemihl are right in taking dpXa/to be the name of the treatise.
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6. wp_ q_baqm_roda% On sphere-making, a mechanical work on

the construction of a sphere representing the motions of the

heavenly bodies as airea_ly mentioned (p. xxi).

7. i_b58_ov, a Method, noticed by Suidas, who says that Theo-

dosius wrote a commentary on it, but gives no further information
about it.

8. According to Hipparchus Archimedes must have written
on the Calendaz or the length of the year (cf. p xxi).

Some Arabian writers attribute to Archimedes works (1) On

a heptagon in a circle, (2) On circles touching one another, (3) On
parallel lines, (4) On triangles, (5) On the properties of right-

angled triangles, (6) a book of Data ; but there is no confirmatory
evidence of his having written such works. A book translated

into Latin from the Arabic by Gongava (Louvain, 1548) and en-

titled a_tiT_i scrlptoris de 8peculo comburente concavitati_ parabolae
cannot be the work of Archimedes, _ince it quotes Apollonius.



CHAPTER III.

THE RELATION OF ARCHIMEDES TO HIS PREDECESSORS.

A._" extraordinarily large proportion of the subject matter of
the writings of Archimedes represents entirely new discoveries of

his own. Though his range of subjects was almost encyclopaedic,

embracing geometry (plane and solid), arithmetic, mechanics, hydro-
statics and astronomy, he was no compiler, no writer of text-

books ; and in this respect he differs even from his great successor

Apollonius, whose work, like that of Euclid before him, largely
consisted of systematising and generalising the methods used, and

the results obtained, in the isolated efforts of earlier geometers.
There is in Archimedes no mere working-up of existing materials ;

his objective is always some new thing, some definite addition to
the sum of knowledge, and his complete originality cannot fail

to strike any one who reads his works intelligently, without any

corroborative evidence such as is found in the introductory letters
prefixed to most of them. These introductions, however, are emi-

nently characteristic of the man and of his work ; their directness

and simplicity, the complete absence of egoism and of any effort

to magnify his own achievements by comparison with those of

others or by emphasising their failures where he himself succeeded :
all these, things intensify the same impression. Thus his manner

is to state simply what particular discoveries made by his pre-

decessors had suggested to him the possibility of extending them
in new directions ; e.g. he says that, in connexion with the efforts

of earlier geometers to square the circle and other figures, it

occurred to him that no one had endeavoured to square a parabola,
and he accordingly attempted the problem and finally solved it.

In like manner, he speaks, in the preface of his treatise On the
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Sphere and Cylinder, of his discoveries with reference to those
solids as supplementing the theorems about the pyramid, the cone

and the cylinder proved by Eudoxus. He does not hesitate to

say that certain problems baffled him for a long time, and that
the solution of some took him many years to effect ; and in one

place (in the preface to the book On Spira/s) he positively insists,
for the sake of pointing a moral, on specifying two propositions

which he had enunciated and which proved on further investigation

to be wrong. The same preface contains a generotu_ eulog T of
Conon, declaring that, but for his untimely death, Conon would

have solved certain problems before him and would have enriched

geometry by many other discoveries in the meantime.
In some of his subjects Archimedes had no fore-runners, e.g.

in hydrostatics, where he invented the whole science, and (so

far as mathematical demonstration was concerned) in his me-

chanical investigations. In these cases therefore he had, in laying
the foundations of the subject, to adopt a form more closely re-

sembling that of an elementary textbook, but in the later parts

he at once applied himself to specialised investigations.
Thus the historian of mathematics, in dealing with Archimedes'

obligations to his predecessors, has a comparatively easy task before
him. But it is necessary, first, to give some description of the use
which Archimedes made of the general methods which had found

acceptance with the earlier geometers, and, secondly, to refer to

some particular results which he mentions as having been previously
discovered and as lying at the root of his own investigations, or

which he tacitly assumes as known.

§ 1. Use of traditional geometrical methods.

In my edition of the Conics of Apollonius*, I endeavoured,

following the lead given in Zeuthen's work, Die Lehre yon den
Kegelschnitten im Altertum, to give some account of what has been

fitly called the geometrical algebra which played such an important

part in the works of the Greek geometers. The two main methods

included under the term were (1) the use of the _teory of l_.P"

portions, and (2) the method of appl_.at_on of areas, and it _tas
shown that, while both methods are fully expounded in the _'/emen_

of Euclid, the second was much the older of the two, being

attributed by the pupils of Eudemus (quoted by Proclus) to the

Apolloniua of Perga, pp. ci sqq.
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Pythagoreans. It was pointed out that the application of wreaz,
as set forth in the second Book of Euclid and extended in the

sixth, was made by Apollonins the means of expressing what he

takes as the fundamental properties of the conic sections, namely
the properties which we express by the Cartesian equations

y_ = px ¥ _t x:,

referred to any diameter and the tangent at its extremity a_ axes ;

and the latter equation was compared with the results obtained in the
27th, 28th and 29th Props. of Euclid's Book vl, which are equivalent

to the solution, by geometrical means, of the quadratic equations

ax+ b-_=D.
--C

It was also shown that Archimedes does not, as a rule, connect his

description of the central conics with the meth_)d of application of

areas, as Apollonius does, but that Archimedes generally expresses

the fundamental property in the form of a proportion

y_ y'_
i --t,

_.X l X .X_

and, in the case of the ellipse,
b'

where x, x] are the abscissae measured from the ends of the diameter
of reference.

It results from this that the application of areas is of much less

frequent occurrence in Archimedes than in Apollonius. It is
however used by the flJrmer in all but the most general form. The

simplest form of "applying a rectangle" to a given straight line

which shall be equal to a given area occurs e.g. in the prop(_itlon On

the equilibrium of Planes II. 1; and the same mode of expression
is used (as in Apollonius) for the property y_ = px in the parabola,

px being described in Archimedes' phrase as the rectangle "applied

to" (Tra4mTr_wrov_rapd) a line equal to p and "having at its width"
(vk_ro_ [Xo_) the abscissa (x). Then in Props. 2, 25, 26, 29 of the

book On Conoid_" and Spheroids we have the complete expression

which is the equivalent of solving the equation

ax + _ = b_,

"let a rectangle be applied (to a certain straigh_ line) exceeding by
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a square figure (_rapaTr(_rcoKir_ Xcop/ov _rEpfld_ov c_cL r_rpaT_w,)
and equal to (a certain rectangle)." Thus a rectangle of this sort

has to be made (in Prop. 25) equal to what we have above called

x.x, in the case of the hyperbola, which is the same thing as

x(a + x) or ax+ x t, where a is the length of the transverse axis.
But, curiously enough, we do not find in Archimedes the application

of a rectangle "falling short by a square figure," which we should
obtain in the case of the ellipse if we substituted x (a- x) for x. x_.

In the case of the ellipse the area x. x_ is represented (On Conoids

and Spheroids, Prop. 29) as a gnomon which is the difference
between the rectangle h. h I (where h, /h are the abscissae of the

ordinate bounding a segment of an ellipse) and a rectangle applied

to lh - h and exceeding by a square figure whose side is h - x ; and
the rectangle h. h_ is simply constructed from the sides h, h_. Thus

Archimedes avoids* the application of a rectangle falling short by a

square, using for x. x_ the rather complicated form

h. h,.- {(h,.- h) (h-x) + (/,,- x)'}.

It is easy to see that this last expression is equal to x. x_, for it
reduces to

h.h,-{h,(h-x)-x(h- x)_

= x(h, + h)-x',

= ax - x_, since h_+ h = a,

:3:.X 1 .

It will readily be understood that the transformation of rectangles
and squares in accordance with the methods of Euclid, Book Ix, is

just as important to Archimedes as to other geometers, and there is

no need to enlarge on that form of geometrical algebra.
The theory of proportions, as expounded in the fifth and sixth

Books of Euclid, including the transformation of ratios (denoted by

the terms componendo, dlvidendo, etc.) and the composition or

multiplication of ratios, made it possible for the ancient geometers
to deal with magnitudes in general and to work out relations
between them with an effectiveness not much inferior to that of

modern algebra. Thus the addition and subtraction of ratios could
be effected by procedure equivalent to what we should in algebra

* The object of Archimedes was no doubt to make the Lemma in Prop. 2
(dealing with the summation of a seriesof terms of the form a .rz+ (rx)2,where r
successively takes the values 1, 2, 3, ...) serve for the hyperboloid of revolution
and the spheroid as well.
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call bringing to a common denominator. Next, the composition or

multiplication of ratios could be indefinitely extended, and hence
the algebraical operations of multiplication and division found easy
and convenient expression in the geometrical algebra. As a par-

ticular case, suppose that there is a series of magnitudes in continued

proportion (i.e. in geometrical progression)as a0, oq, eh, ... a,, so that

a1 a2 a,,

We have then, by multiplication,

--_ or -- = .

ao \ao/ C_o

It is easy to understand how powerful such a method as that of

proportions would become in the hands of an Archimedes, and a few
ir_tances are here appended in order to illustrate the mastery with
which he uses it.

1. A good example of a reduction in the order of a ratio after

the manner just shown is furnished by On the e(luilibriura of Planes

IL 10. Here Archimedea has a ratio which we will call a3/b3,where
a_/b'_=c/d ", and he reduces the ratio between cubes to a ratio

between straight lines by taking two lines x, y such that

c x ¢/

oo,It follows from this that = _ = b_ ,

O_ C

or _,=;c;

(;) c xd candhence = 3'9--9"
2. In the last example we have an instance of the use of

auxiliary fixed lines for the purpose of simplifying ratios and

thereby, as it were, economising power in order to grapple the more
succeasfully with a complicated problem. With the aid of such

auxiliary lines or (what is the same thing) auxiliary fixed points in

a figure, combined with the use of proportions, Archimedes is able to
effect some remarkable eliminations.

Thus in the proposition On the Sphe're and Cylinder H. 4 he obtains

three relations connecting three as yet undetermined points, and
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proceeds at once to eliminate two of the points, so that the problem
is then reduced to finding the remaining point by means of one

equation. Expressed in an algebraical form, the three original
relations amount to the three equations

3a-x y t

2a-x-- x

-- t 9X X,

,m }____ _

Z n

and the result, after the elimination of y and z, is stated by

Archimedes in a form equivalent to

m+n a+x 4a:

_- a -(2a-_)_'
Again the proposition On t_ equilibrium of Planes IL 9 proves

by the same method of proportions that, if a, b, c, d, x, y, are straight
lines satisfying the conditions

ab_ C _db el' x(a > b > c> d) l
._d = _(,___)' |

)2a + 4b +6c+ 3d y
and 5a-_--i-06+ 10c+ El = a - c'

then x + y = _-a.

The proposition is merely brought in as a subsidiary lemma to the
proposition following, and is not of any intrinsic importance ; but a

glance at the proof (which again introduces an auxiliary llne) will
show that it is a really extraordinary instance of the manipulation

of proportions.

3. Yet another instance is worth giving here. tt amounts to

the proof that, if
x2 y2
a_ + _= 1,

then 2a + x.. yS (a - x) + _. y2 (a + x) =
4ab2.

a+x

A, A' are the points of contact of two parallel tangent planes to a

spheroid ; the plane of the paper is the plane through AA' and the
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axis of the spheroid, and ppt is the intersection of this plane with

another plane at right angles to it (and therefore parallel to the

tangent planes), which latter plane divides the spheroid into two

segments whose axes are Aft, A '-_. Another plane is drawn through

A A

the centre and parallel to the tangent plane, cutting the spheroid

into two halves. Lastly cones are drawn whose bases are the

sections of the spheroid by the parallel planes as shown in the
figure.

Archimedes' proposition takes the following form [On Conoid8

and Spheroids, Props. 31, 32].
APP' being the smaller segment of the two whose common base

is the section through PP', and x, y being the coordinates of 1 ),

he ha proved in preceding propositions that

(volume of) segment APP' 2a + x
-_voi_meo_coneaP/_' = h_-_ ................ (_)'

and h_al_fspheroid A/_/_' 2 ; .... (B),cone A B/_'

and he seeks to prove that

segment A'goP' 2a - x
cone A'P.P' a - x

The method is as follows.

We have cone A//B' __ a b2 _-_- a a_
_neAPP' a-x _ a-x'a_-x 2"

If we suppose .... . ............................. (7),

the ratio of the cones becomes ___za
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Next, by hypothesis (a), "

cone APP' a + x

segmt. AI"P' - 2a + x"

Therefore, ex aequali,
cone .4 B B' za

segmt. APP' (a- x) (2a + x)"

It follows from (fl) that

spheroid 4za
segmt. APP' - (a- x) (2a + x)'

whence segmt. A'P.P' 4za - (a - x) (2a + x)
segmt. A P P' - (a - x) (2a + x)

(_- x)(2a+_)

Now we have to obtain the ratio of the segment A'PP' to the cone

A'I"_P', and the comparison between the segment APP' and the cone

A'PP' is made by combining two ratias ex aequali. Thus

segmt.__Al'_P' _ 2a__+x by (a),cone A PP' a + x '

coneAPP' a- x
and

cone A'PP' a+x

Thus combining the last three proportions, ex aequali, we have

segant. A'PP' _ z(2a - x) + (2a +__)_(z-- a -_x)
cone A-'PP" a2+ 2ax + x 2

=_(2_- _)+(m_+_)(_-a- _)
,(,_-_)+(2_+_) _ '

since a" = z (a - x), by (7)"

[The object of the transformation of the numerator and denominator
of the last fraction, by which z (2a - x) and z (a - x) are made the

2a - x .
first terms, is now obvious, because is the fraction which

a -- ."g

Archimedes wishes to arrive at, and, in order to prove that the
required ratio is equal to this, it is only necessary to show that

2a- ,___- (a- _).1J
_--X X
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Now -- I + --
a--x a_x

: 1+-z byb,),

a,

_ z- (_-x)(d_videndo),
2C

so that segmt..4'PI" _ 2a -- x
cone A ']_P' a- x

t. One use by Euclid of the method of proportions deserves

mention bccause Archimedes does not use it in similar circumstances.

Archimedes (Quadrature oftl_e I'araSola, Prop. 23) sums a particular

geometric series
a + a(-_)+ _ (_: + ... + _ (_)"-'

in a manner somewhat similar _ that of our text-books, whereas

Euclid (ix. 35) sums any geometric series of ally number of terms by

mean_ of proportions thus.

Suppose a_, a_ .... a,_, a,_+l to be (n_ l) terms of a geometric

series in which a,+_ is the greatest term. Then

a n an_ I a,_o ai

Therefore _a,+__- a__=_ a_ --_an__I= a._- eh
an an_l al

Adding all the antecedents and all the consequents, we have

(t_+l -- ($I t_o-- a I

which _ves the sum of n terms of the series.

§ 2. Earlier discoveries _.ffecting quadrature and cuba-
ture.

Archimedes quotes the theorem that circles are to one. another as

lhe squares on t/wir dia_ne_rs as having be_ proved by earlier

geometers, and he also says that it was proved by means of a certain

lemma which he states as fellows: "Of unequal lines, unequal

surfaces, or unequal solids, the greater exceeds the less by such a

magnitude as is capable, if added [continually] to itself, of exceeding
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any given magnitude of those which are comparable with one another

(_-_v _rp_s _kk_ka keyo/_&c_v)." We know that Hippocrates of Chios

proved the theorem that circles are t_) one another as the squares on
their diameters, but no clear conclusion can be established as to the

method which he used. On the other hand, Eudoxus (who is

mentioned in the preface to The Sphere and Cylinder as having
proved two theorems in solid geometry to be mentioned presently)

is generally credited with the invention of the n_t]wd of exhaustion
by which Euclid proves the proposition in question in xu. 2. The

lemma stated by Archimede_ to have been used in the original proof
is not however found in that form in Euclid and is not used in the

proof of xH. 2, where the lemma used is that proved by him in
x. 1, viz. that "Given two unequal magnitudes, if from the greater

[a part] be subtracted greater than the half, if from the remainder

[a part] greater than the half be subtracted, and so on continually,
there will be left some magnitude which will be less than the lesser

given magnitude." This last lemma is frequently assumed by

Archimedes, and the application of it to equilateral polygons in-
scribed in a circle or sector in the manner of xzl. 2 is referred to as

having been handed down in the Elements*, by which it is clear

that only Euclid's Flememts can be meant The apparent difficulty
caused by the mention of two lemmas in connexion with the theorem

in question c_n, however, I think, be explained by reference to

the proof of x. 1 in Euclid. lie there takes the lesser magnitude
and says that it is possible, by multiplying it, to make it some time

exceed the greater, and this statement he clearly bases on the 4th

definition of Book v. to the effect that "magnitudes are said to bear
a _'atio to one another, which can, if multiplied, exceed one another."

Since then the smaller magnitude in x. 1 may be regarded as the

difference between some two unequal magnitudes, it is clear that the

lemma first quoted by Archimedes is in substance used to prove the

lemma in x. 1 which appears to play so much larger a part in the in-
vestigations in quadrature and cubature which have come down to us.

The two theorems which Archimedes attributes to Eudoxus

by name+ are

(1) that any l)yramid is one third part of the prism which has

the same base as the pyramid and equal height, and

*' On the Sphere and Cyhnder, z. 6.
_b/d. Preface.
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(2) that any cone is one third part of the cylinder wldvh has
the same base as the cone and equal ]wig_.

The other theorems in solid geometry which Archimedes quotes

as having been proved by earlier geometers are*:

(3) Co_w_s of equal height are in the ratio of their bases, and
co_wersely.

(4) If a cylin_er be divided by a plane parallel to the base,
cylinder is to cylinder as axis to axis.

(5) Cones which have the same bases as cylinders a_ equal
height _'ith them are to one another as the cylinders.

(6) The bases of equal cones are reciprocally proportional to
their heights, and conversely.

(7) Cones the dia,wAers of whose bases have the same ratio _s
their eazes are in the triplicate ratio of the diameters _ their bases.

In the preface to the Quadrature of the Parabola he says

that earlier geometers had also proved that

(8) b'pheres have to one anot]_r the triplic_ate ratio of their
diameters ; and he adds that this proposition and the first of those

which he attributes to Eudoxus, numbered (1) above, were proved

by means of the same lemma, viz. that the difference between
any two unequal magnitudes can be so multiplied as to exceed

any given magnitude, while (if the text of tteiberg is right) the

second of the propositions of Eudoxus, numbered (2), was proved
t,y means of "a lemma similar to that aforesaid." As a matter

of fact, all the propositions (1) to (8) are given in Euclid's twelfth

Book, except (5), which, however, is an easy deduction from (2);
and (1), (2), (3), and (7) all depend upon the same lemma [x. 1]
_s that used in Euel. xH. 2.

The proofs of the above seven propositions, excluding (5), P._
given by Euclid arc too long to quote here, but the following sketch

will show the line taken in the proofs and the order of the propo-

sitions. Suppose ABCD to be a pyramid with a triangular base,

and suppose it to be cut by two planes, one bisecting AB, AC,
A D h_ F, G, E respectively, and the other bisecting ]_C, /_D, BA

m H, K, F re_pectively. These planes are then each parallel to

one face, and they cut off two pyramids each similar to the original

" Lemmas placed between Props. 16 and 17 of Book z. On the Sphere and
Cylinder.

_.A. d
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pyramid and equal to one another, while the remainder of the
pyramid is proved to form two equal prisms which, taken together,

A

B K D

are greater than one half of the original pyramid [xII. 3]. It is

next proved [xlI. 4] that, if there are two pyramids with triangular

bases and equal height, and if they are each divided in the
manner shown into two equal pyramids each similar to the whole

and two prisms, the sum of the prisms in one pyramid is to the
sum of the prisms in the other in the ratio of the bases of the

whole pyramids respectively. Thus, if we di_Sde in the same

manner the two pyramids which remain in each, then all
the pyramids which remain, and so on continually, it follows

on the one hand, by x. 1, that we shall ultimately have

pyramids remaining which are together less than any assigned
solid, while on the other hand the sums of all the prisms

resulting from the successive subdivisions are in the ratio of

the bases of the original pyramids. Accordingly Euclid is able

to use the regular method of exhaustion exemplified in XIL 2,
and to establish the proposition [xn. 5] that pyramids with the

same height and with triangular bases are to one another as their

bases. The proposition is then extended [xn. 6] to pyramids with the

same height and with polygonal bases. Next [x_L 7] a prism with

a triangular base is divided into three, pyramids which are shown
to be equal by means of XlL 5 ; and it follows, as a corollary, that

any pyramid is one third part of the prism which has the same
base and equal height. Again, two similar and similarly situated

pyramids are taken and the solid parallelepipeds are completed,
which are then seen to be six times as large as the pyramids

respectively; and, since (by xL 33) similar parallelepipeds are ii_
the triplicate ratio of corresponding sides, it follows that the same
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is true of the pyramids [xtl. 8]. A corollary gives the obvious

extension to the ease of similar pyramids with polygonal bases,

The proposition [xlt. 9] that, in equal pyramids with triangular
bases, the bases are reciprocally proportional to the heights is

proved by the same method of completing the parallelepipods and
using xL 34; and similarly for the converse. It is next proved

[xu. 10] that, if in the circle which is tile base of a cylinder a
square be. described, and then polygons be successively described

by bisecting the arcs remaining in each case, and so doubling the
number of sides, and if prisms of the same height as the cylinder
t,e erected on tile square and the polygons a_ bases respecti_ ely,

the prism with the square base will be greater than half the

cylinder, the next prism will add to it more than half of the
remainder, and so on. And each prism is triple of the pyramid with
the same ba._e and altitude. Thus the same method of exhaustion

as that in xn. 2 proves that any cone is one third part of the

cylinder with the same ba._e and equal height. Exactly the same

method is used to prove [xn. 11] that cones and cylinders which
have the same height are to one another as their bases, and

[xI1. 12] that similar eone_ and cylinders are to one another in
the triplicate ratio of the diameters of their bases (the latter
propositmn depending of course on the similar proposition xn. 8

for pyramids). The next three propositions are proved without

french recourse to x. 1. Thus the criterion of equimultiples laid

down in Def. 5 of Book v. is used to prove [xxt. 13] that, if a

cylinder be cut by a plane parallel to its bases, the resulting
cylinders are to one another as their axes. It is an easy deduction

[xtL 14] that cones and cylinders which have equal bases are

proportional _o their heights, and [xm 15] that in equal cones
and cylinders the bases are reciprocally proportional to the heights,

and, conversely, that cones or cylinders having this property are

equal. Lastly, to prove that spheres are to one another in the

triplicate ratio of their diameters [xII. 18], a new procedure is
adopted, invoh-ing two preliminary propositions_ In the first of

these [xxt. 16] it is proved, by an application of the usual lemma
r_ 1, that, if two concentric circles are given (however nearly

equal), an equilateral polygon can be inscribed in the ou_r circle

whose sides do not touch the inner ; the _cond proposition [xxI. 17]
uses the resul_ of the first to prove that, given two concentric

spheres, it is possible to inscribe a certain polyhedron in the outer

d2
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so that it does not anywhere touch the inner, and a corollary adds
the proof that, if a similar polyhedron be inscribed in a second

sphere, the volumes of the polyhedra are to one another in the

triplicate ratio of the diameters of the respective spheres. This

last propel_y is then applied [xIt. 18] to prove that spheres are
in the triplicate ratio of their diametera.

§ 3. Conic Sections.

]n my edition of the Conics of Apollonius there is a complete
account of all the propositions in conics which are used by Archi-

medes, classified under three headings, (1) those propositions

which he expressly attributes to earlier writers, (2) those which

are assumed without any such reference, (3) those which appear to
represent new developments of the theory of conics due to Archi-

medes himself. As all these properties will appear in this

volume in their proper places, it will suffice here to state only
such propositions as come under the first heading and a few under

the second which may safely be supposed to have been previously
known.

Archimedes says that the following prop_*itions " are proved
in the elements of conics," i.e. in the earlier treatises of Euclid
and Aristaeus.

1. In the parabola

(a) if PV be the diameter of a segment and QVq the
chord parallel to the tangent at 1', then Q V = Vq;

(b) if the tangent at Q meet VP produced in T, then
PV=PT;

(c) if two chords Q Vq, Q' V'q' each parallel to the tangent
at P meet the diameter PV in V, V' respectively,

PV : PV'=QV _ : Q'V '_.

2. If straight lin_s drawn from the same point touch any

c_rnle sectio_e whatever, and if two chords parallel to the respective
tangents intersect one another, then the rectangles under the

segments of the chords are to one another as the squares on the

parallel taugents respectively.

3. The following proposition is quoted as proved "in _he conics."
If in a parabola Pa be the parameter of the principal ordinates,
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QQ' any chord not perpendicular to the axis which is bisected in V

by the diameter lvV, p the parameter of the ordinates to P_, a_ld
if QD be drawn perpendicular to Fir, then

Q V* : QD*=P : Pa.

[On Conaicls and Spheroids, Prop. 3, which see.]

The properties of a parabola, t'N" - p_. A _V, and Q V _--p. P _;
were already well known before the time of Archimedes. In fact

the former property was used by Menaechinus, the discoverer of
conic sections, in his duplication of the cube.

It may be taken as certain that the following propertie_q of the

elhpse and hyperbola were proved in the Conics of Euclid.

1. For the ellipse

PN _ : A,V. A'W-- P'_V '_ : AN'. A'N'=- CB 8 : CA"

and QV2:I'V.P'V=Q'V'_:PV'.P'V'=CDS:CP_.

(Either proposition could in fact be. derived from tile proposition

about the rectangles under the segments of intersecting chords

above referred to.)

2 For the hyperbola

PIV* : A_V. A'zV= P'_V'* : AN'.A'_V'

a,ld Og" : PV. P'V= O'V '2 : t'V'. P'V',

though in this case the absence of the conception of the double

hyperbola as one curve (first found in Apollonius) prevented Euclid,
and Archimedes also, from equating the respective ratios to tho_

of the squares on the parallel semidiameters.

3. In a hyperbola, if P be any point on the curve and PA',

PL be each drawn l_rallel to one asymptote and meeting the
other,

I_K. PL = (const.)

This property, in the particular case of the rectangular hyperbola,
was known to Menaechmus.

It is probable also that the property of the subnormal of the

parabola (N_7_-_½pa) was known to Archimedes' predece_ors. It

is tacitly assumed, On .floating bodies, u. 4, etc.

From the assumption that, in the hyperbola, AT<Aft (where
A: is the foot of the ordinate from P, and T the point in which the
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tangent at P meets the transverse axis) we may perhaps infer
that the harmonic property

TP: TP'= PV : P'V,

or at least the particular ea._e of it,

TA : TA'=AN : A'_V,

was known before Archimedes' time.

Lastly, with reference to the genesis of conic sections from

cones and cylinders, Euclid had already stated in his Phaenomena

that, "if a cone or cylinder be cut by a plane not parallel to the
base, the resulting section is a section of an acute-angled cone

[an ellipse] which is similar to a 0,,p_." Though it is not probable

that Euclid had in mind any other than a right cone, the statement

should be compared with On 6'onoids and Spheroids, Props. 7, 8, 9.

§ 4. Surfaces of the second degree.

Prop. 11 of the treatise Ou Conoids and Spheroids states without

proof the nature of certain plane sections of the conicoids of revo-
lution. Besides the ob_-ious facts (1) that sections perpendicular

to the axis of revolution are circles, and (2) that sections through

the axis are the same as the generating conic, Archimedes assert_s
the following.

1. In a paraboloid of revolution any plane section parallel to

the axis is a parabola equal to the generating parabola.

2. In a hyperboloid of revolution any plane section parallel

to the axis is a hyperbola similar to the-generating hyperbola.

3. In a hyperboloid of revolution a plane section through the

vertex of the enveloping cone is a hyperbola which is not similar
to the generating hyperbola

4. In any spheroid a plane section parallel to the axis is an
ellipse similar to the generating ellipse.

Archimedes adds that "the proofs of all these propositions

are manifest (dpavctml)." The proofs may in fact be supplied as
follows.

1. Section of a paraboloid of revolution by a plane parallel
to the a_.
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Suppose that the plane of the paper represents the plane section

through the axis AN which intersects the given plane section at right

angles, and let A'O be the line of intersection. P
Let POP' be any double ordinate to AN in the

section through the axis, meeting A'O and AN

at right angles in 0, N respectively. Draw A'M A' o

perpendicular to AN.
Suppose a perpendicular drawn from 0 to

A'0 in the plane of the _vcn section parallel to
the axis, and let y be the length intercepted by

the surface on this perpendicular.

Then, since the extremity of y is on the
circular section whose diameter is PP',

_= PO. OP'.

If A'O = x, and if p is the principal parameter of the generating

parabola, we have then
y_ _ pN __ ON _

:- PN _ A'M 2

= px,

so that the section is a parabola equal to the generating parabola.

2. Section of a hyperboloid of revolution by a plato parallel to
the a_q.

Take, as before, the plane section through the axis which intersects

C' A' P

I 0 "
C A

the given plane 8action at right angles in A'O. Let .the hyperbola
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PAP' in the plane of the paper represent the plane section through

the axis, and let C be the centre (or the vertex of the enveloping
cone). Draw CC' perpendicular to CA, and produce OA' to meet it
in C'. Let the rest of the construction be as before.

Suppose that
CA = a, C'A' -=a', C'O -- _c,

and let y have the same meaning as before.

Then y2 _=1'0 . OP' = P2( 2 - A'M".

And, by the property of the original hyperbola,

P.LV2 : C2V"2- CA°'= A'M 2 : CM _'- CA 2 (which is constant).

Thus A'M _ : CM"-CA_= l'i_"_: CN _- CA _

= P.N 2 - A'M _ : CN _ - CM"

= y'2, : x2 a_2

whence it appears that the section is a hyperbola similar to the
original one.

3. Section of a hyperbolold of revolution by a plane pas_ng

through the centre (or the vertex of the envelopi_ cone).

I think there can be no doubt that Archimedes would have proved

his proposition about this section by means of the same general

property of conics which he uses to prove Props. 3 and 12-14 of
the same treatise, and which he enunciates at the beginning of

Prop. 3 as a known theorem proved in the "elements of conics," via

that the rectangles under the segments of intersecting chords are as

the squares of the parallel tangents.

Let the plane of the paper represent the plane section through
the axis which intersects the given plane passing through the

centre at right angles. I_t CA'O he the line of intersection, C

being the centre, and A' being the point where CA'O meets the

surface. Suppose CAM.N to be the axis of the hyperboloid, and
.POp, P'O'p' two double ordinates to it in the plane section through

the axis, meeting CA'O in 0, 0' respectively i similarly let A'M be
the ordinate from A'. Draw the tangents at A and A' to the

section through the axis meeting in T, and let QOq, Q'O'q' be the

two double ordinates in the same section which are parallel to the

tangent at A' and pass through 0, 0' respectively.

Suppose, as before, that y, y' are the lengths cut off by the
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surfacefromtheperpendicularsat0 and O' toOC intheplaneof

thegivensectionthroughCA'O,and that

CO:x, CO'=x', CA=a, CA':a'.

Q.

°

Then, by the property of the intersecting chords, we have, since
(,)0-: 07,

PO . Op : QO_-: TA' : TA '_

-: P'O' . O'p' : O'O"-.

Also y_=PO. Op, y'_= P'O'. O'p',

and, by the property of the hyperbola,

QO" : x'-a'2:--Q'O '2 : x '2 -a'".

It follows, ex aequali, that

y_ : x_-a'"-=y ''' : x '_- a". .......... (a),

and therefore that the section is a hyperbola.
To prove that this hyperbola is not similar to the generating

hyperbola, we draw CC' perpendicular to CA, and C'A' parallel t(,
CA meeting CC' in C' and Pp in U.

If then the hyperbola (a) is similar to the original hyperbola, it
must by the last proposition be similar to the hyperbolic section
made by the plane through C'A'U at right angles to the plane of
thepaper.

Now CO__CA,_=(C,U2_C,A,_)+(CC, +OU)___CC,._

> C'U'_ _ C,A,2,

and PO. Op < PU. Up.
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Therefore PO . Op : C02-CA'2-_PtT. Up : C'U 2- C 'A'2,

and it follows that the hyperbolas are not similar*.

4. Section of a spt_roid by a plane parallel to the axis.

That this is an ellipse similar to the generating ellipse can of

course be proved in exactly the same way as theorem (2) above

for the hyperboloid.

• I think Archimedes is more likely to have used this proof than one on the

lines suggested by Zeuthen (p. 421). The latter uses the equation of the
hyperbola simply and proceeds thus. If y have the same meaning as above,

and if the coordinates of P referred to CA, CC' as axes be z, x, while those of O

referred to the same axes arc z, x', we have, for the point P,

x_=_ (_s- _),
where _ is constant.

Also, since the angle A'CA is given, x'=az, where a is constant.

Thus y°'=x_ - x'2= (K- a _)z2 - Ka2.
CO

Now z is proportional to CO,'being in fact equal to _/i-_'-" and the equation
becomes

Y- 1+-_" CO'_- _a2........................... (1),

which is dearly a hyperbola, since _-_< K.

,Now, though the Greeks could have worked out the proof in a geometrical
form equivalent to the above, I think that it is alien from the manner in which

Archimedes regarded the equations to central conics. These he always expressed

in the form of a proportion

y, _/', E b_ .-- _5 m the case of the eUipsex_ £ a-_= x,-7~a2

and never in the form of an equation between areas like that used by

ApoUonius, viz.

y2=px _ P x_.

Moreover the occurrence of the two different constants and the necessity
of expressing them geometrically as ratios between areas and lines respectively
would have made the proof very long and complicated ; and, as a matter of fact,
Archimedes never does express the ratio yU](x2 - a_) in the case of the hyperbola

in the form of a ratio between constant areas like b'_Ia_. Lastly, when the
equation of the given section through CA'O was found in the form (1), assuming

that the Greeks had actually found the geometrical equivalent, it would still
have been held necessary, I think, to verify that

---K___. a_'
CA'Z

before it was tinnily pronounced that the hyperbola represented by the equation
and the section made by the plane were one and the same thing.



RELATION OF ARCHIMEDES TO HIS PREDECESSORS. liX

We are now in a position to consider the meaning of Archimedes'
remark that "the proofs of all these properties are manifest." In

the first place, it is not likely that "manifest" means "known" as

having t_en proved by earlier geometers; for Archimedes' habit is

to be precise in stating the fact whenever he uses important

propositions due to his immediate predecessors, as witness his
references to Eudoxus, to the El_m_en_s [of Euclid], and to the
,'elements of conics." When we consider the remark with reference

to the cases of the sections parallel to the axes of the surfaces

respectively, a natural interpretation of it is to suppose that

Archimedes meant simply that the theorems are such as can easily
be deduced from the fundamental properties of the three conics now

exprc.ssed by their equations, coupled with the consideration tilat

the sections by planes perpendicular to the axes are circles. But I
think that this particular explanation of the "manifest" character

of the proofs is not so applicable to the third of the theorems

stating that any plane section of a hyperboloid of revolution

through the vertex of the enveloping cone but not through the axis
is a hyperbola. This fact is indeed no more "manifest" in the
ordinary sense of the term than is the like theorem about the

spheroid, viz. that any section through the centre but not through
the axis is an ellipse. But this latter theorem is not given alolig

with the other in Prop. 11 as being "manifest"; the proof of it is

included in the more general proposition (14) that any section of a

spheroid not perpendicular to the axis is an ellipse, and that parallel
sections are similar. :Nor, seeing that the propositions are essen-

tially similar in character, can I think it possible that Archimedes

wished it to be understood, as Zeuthen suggests, that the proposition

about the hyperboloid alone, and not the other, should be proved
directly by means of the geometrical equivalent of the Cartesian

c_tuation of the conic, and not by means of the property of the
rectangles under the segments of intei_ecting chords, used earlier

[Prop. 3] with reference to the parabola and later for the case of

the spheroid and the elliptic sections of the conoids and spheroids

geuerally. This is the more unlikely, I think, becau_ the proof

by means of the equation of the conic alone would present much

more difficulty to the Greek, and therefore could hardly be called
"manifest."

It seems necessary therefore to seek for another explanation,
and I think it is the following. The theorems, numbered 1, 2, and
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4 above, about sections of conoids and spheroids parallel to the axi_

are used afterwards in Props. 15-17 relating to tangent planes;

whereas the theorem (3) about the section of the h3Terboloid by a

plane through the centre but not through the axis is not used in
connexion with tangent planes, but only for formally proving _hat a

straight line drawn from any point oil a hyperboloid parallel to any

transverse diameter of the hyperboloid falls, on the convex'side of
the surface, without it, and on the concave side within it. Hence

it does not seem so probable that the four theorems were collected
in Prop. 11 on account of the use made of them later, as that they

were inserted in the particular place with special reference t_ the

three propositions (12-14) immediately following and treating of the
elliptic sections of the three surfaces. The main object of the whole

treatis_ was the determination of the volumes of segments of the
three solids cut off by planes, and hence it was first necessary to
determine all the sections which were ellipses or circles and therefore

could form the bases of the se_o_nents. Thus in Props. 12-14
Archimedes addresses himself to finding the elliptic sections, but,

betbre he does this, he gives the theorems grouped in Prop. l 1 by
way of clearing the ground, so as to enable the propositions about

elliptic sections to be enunciated with the utmost precision. Prop.

ll contains, in fact, explanations directed to defining the scope of

the three following propositions rather than theorems definitely
enunciated for their own sake ; Archimedes thinks it necessary t_,

explain, before passing to elliptic sections, that sections perpen-
dicular to the axis of each surface are not ellipses but circles, and

that some _ctions of each of the two conoids are neither ellipses nor

circles, but parabolas and hyperbolas respectively. It is as if he had
said, "My object being to find the volumes of segments of the three

solids cut off by circular or elliptic sections, I proceed to consider

the various elliptic sections ; but I should first explain that sections

at right angles to the axis are not ellipses but circles, while sections
of the conoids by planes drawn in a certain manner are neither

ellipses nor circles, but parabolas and hyperbolas respectively. With

these last sections I am not concerned in the next propositions, and

I need not therefore cumber my book with the proofs ; but, as some

of them can be easily supplied by the help of the ordinary properties
of conics, and others by means of the methods illustrated in the

propositions now about to be given, I leave them as an exercise for

the reader." This will, I think, completely explain the assumption



RELATION OF ARCHIMEDF_S TO HIS PREDECESSORS. lxl

of all the theorems except that concerning the sections of a spheroid
parallel to the axis ; and I think this is mentioned along with the

others for symmetry, and because it can be proved in the same way
as the corresponding one for the hyperboloid, whereas, if mention of

it had been postponed till Prop. 14 about the elliptic sections of a

spheroid generally, it would still require a proposition for itself, since

the axes of the sections dealt with in Prop. 14 make an angle with
the axis of tile spheroid and are not parallel to it.

At the same time the fact that Archimedes omits the proofs of

the theorems about sections of conoids and spheroids parallel to the
axis a,s "manifest" is in itself sufficient to raise the presumption

that contemporary geolneters were familiar with the idea of three

dimensions and knew how to apply it in practice. This is no matter
for surprise, seeing that we find Archytas, in his solution of the

problem of the two mean prol.ortionals , using the intersection of a
certain cone with a curve of double curvature traced on a right

circular cylinder _. But, when ue look for other instances of early

investigations in geometry of three dimensions, we find practically

nothing except a few xague indicatmns as to the contents of a lost
treatise of Euclid's consisting of two Books entitled Surface-loci

(rdTro_ wp5_ _rtCavd_,_)_. This treatise is mentioned by Pappus

among other works by Aristaeus, Euclid and Apollouius grouped
as forming the so-called rSro_ dvakvd/z_vo_ +. As the other works in

the list which were on plane subjects dealt only with straight line_s,

clrch.s and conic sectmns, it is a pr/or/likely that the surface-loci of

* Cf. Eutocius on Archimedes (Vol. izi. pp. 9_--102), or Apollonius of Perga,
pp. xxli.--xxlii.

t By this term we conclude that the (]reeks meant "loci which are surfaces"
as &street from loci which are Lines. Cf. Proclus' defimtion of a locus as
"a position of a line or a surface involving one and the same property"
(Tpa/z_ _ _w_bavela_8daer xo_o_a _v xa2 ra(rrbv a'f_'rw/_a), p. 394. Pappus
(pp. 660--2) gives, quoting from the Plane Loci of Apollonius, a classification of
loclaccording to their order in relation to that of which they axe the locn Thus,
he says, loci are (1) $_Kr_KOl,i.e.fixed, e.g. in this sense the locus of a point Is
a point, of a line a line, and so on; (2) &e$o&Ko/ormoving along, a line being m
this sense the locus of a point, a surface of a line, and a solid of a surface;
(3) ¢i_aar_ot, turning backwarde, i.e., presumably, moving backwards and
forwards,a surface being in this sense the locus of a point, and a solid of a line.
Thus a surface-lacu_ might apparently be either the locus of a point or the
locus of a line moving in space.

**Pappus, pp. 634, 636.
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Euclid included at least such loci as were cones, cyhnders and

spheres. Beyond this, all is conjecture based upon two lemmas

given by Pappus in connexion with the treatise.
Fire_ lamina to _he Surface-loci of Euclid*.
The text of this lemma and the attached figure are not satisfac-

tory as they stand, but they have been explained by Tannery in a

way which requires a change in the figure, but only the very slightest
alteration in the text, as follows?.

"If A/_ be a straight line and CD be parallel to a straight lille

given in position, and if the ratio AD . DB : DC _ be [given], the

point C lies on a conic section. E

If nowABbenolongergivenin /__/_

position and A, B be no longer

given but lie on straight lines
AE, EB given in position**, the

point C raised above [the plane

containing AE, EB] is on a
surface given in position. And

this was proved."

According to this interpretation, it is asserted that, if AB moves

with one extremity oll each of the lines AE, EB which are fixed,
while DC is in a fixed direction and AD . .DB : DC _"is constant,
then C lies on a certain surface. So far as the first sentence is

concerned, AB remains of constant length, but it is not made

precisely clear whether, when AB is no longer given in position, its

length may also vary§. If however AB remains of constant length
for all positions which it assumes, the surface which is the locus of

C would be a complicated one which we cannot suppose that Euclid

could havc profitably investigated. It may, therefore, be that
Pappus purposely left the enunciation somewhat vague in order to

make it appear to cover several surface-loci which, though belonging
to the same type, were separately discussed by Euclid as involving

* Pappus, p. 1004.
"_Bullettn des sciences math., 2*Sdrie, vi. 149.
$ The words of the Greek text are _dv_rat _ _ O_actefOda"r_shE, EB,

and the above translation only requires ebOetaL_instead of eb0e_a. The figure m
the text is so drawn that ADB, AEB are represented as two parallel fines, and
CD is represented as perpendicular to ADB and meeting AEB in _2.

§ The words axe simply "if AB be deprived of _ts _ositwn (¢vep_O__7_
0i_ews) and the points A, B be deprived of their [eh_.cter of] being glven"
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in each case somewhat different sets of conditions limiting the

generality of the theorem.
It is at least open to conjecture, as Zeuthen has peintcd out*,

that two cases of the type were considered by Euclid, namely, (I)

that in which AB remains of constant length while the two fixed
straight lines on which .4, B respectively move are parallel instead

of meeting in a point, and ('2) that in which the two fixed straight

lines meet in a point while .4B moves always parallel to itself
and varies in length accordingly.

(1) In the first case, where the length of .4B is constant and
the two fixed lines parallel, we should have a surface de_acribed by a

conic moving bodilyL This surface would be a cylindrical surface,

though it would only have been called a "cylinder" by the ancients
in the case where the moving conic was an ellipse, since the essence

of a "cylinder" was that it could be bounded between two parallel

circular sections. If then the moving conic was an ellipse, it would
not be difficult to find the circular sections of the cylinder; this

could be done by first taking a section at right angles to the axis,

after which it could be proved, after the manner of Archimedes,
On Conoids and Spheroid, Prop. 9, first that the section is an ellipse

or a circle, and then, in the former case, that a section made by

a plane drawn at a certain inclination to the ellipse and passing

through, or parallel to, the major axis is a circle. There was

nothing t_ prevent Euclid from investigating the surface similarly

generated by a moving hyperbola or parabola; but there would
be no circular scctions, and hence the surfaces might perhaps not

have been considered as of very great importance.

(2) In the second case, where .4E, _E meet at a point and
AB moves always parallel to itself, the surface generated is of

course a cone. Some particular cases of this sort may easily have

been discussed by Euclid, but he could hardly have dealt with the
general case, where DC has any direction whatever, up to the

point of showing that the surface was really a cone in the sense
in which the Greeks understood the _rm, or (in other words)

of finding the circular sections. To do this it would have been
necessary to determine the principal planes, or to solve the dis-

* Zeuthen, D/e Lehre van den Kegelschn_tten, pp. 425 sqq.
This would give a surface generated by a moving line, $_tffo_Kb_7pap/_

asPappus has it.
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criminating cubic, which we cannot suppose Euchd to have done.

Moreover, if Euclid had found the circular sections in the most

general case, Archimedes would simply have referred to the fact

instead of setting himself to do the same thing in the particular
case where the plane of symmetry is given. These remarks apply

to the case where the conic which is the locus of C is an ellipse ;
there is still less ground for supposing that Euclid could have

proved the existence of circular sections where the conic was a

hyperbola, for there is no evidence that Euclid even knew that

hyperbolas and parabolas could be obtaiued by cutting an oblique
circular cone.

_econd lemma to the Surface-loci.

In this Pappus states, and gives a complete proof of the propo-
sition, that the locus of a point whose distance from a giveve point
is in a given ratio to _ts distanee from a fixed line is a conic

section, which is an ellipse, a parabola, or a hyperbola according

as the given ratio is less thalb equal to, or greater t]azn unity%

Two conjectures are possible as to the application of this theorem
by Euclid in the treatise referred to.

(1) Consider a plane and a straight liue me_eting it at auy angle.
Imagine any plane drawn at right angles to the straight line and
meeting the fil_t plane in another straight line which we will call

X. If then the given straight line meets the plane at right angles
to it in the point 5_, a conic can be described in that plane with

S for focus and X for directrix ; and, as the perpendicular on X

from any point on the conic is in a constant ratio to the per-

pendicular from the same point on the original plane, all points
on the conic have the property that their distances from S are in

a given ratio to their distances from the given plane respectively.

Similarly, by taking planes cutting the given straight line at right
angles in any number of other points besides S, we see that the locus

of a point whose distance from a given straight line is in a given
ratio to its distance from a given plane is a cone wlmse vertex is

the point in which the given line meets the given pla_e, while the

plane of symmetry passes through the given line and is at right

angles to the given plane. If the given ratio was such that the
guiding conic was an ellipse, the circular sections of the surface

. _e Pappus, pp. 1006--1014, and Hult_.h's Appendix, pp. 1270--1273 ; or
of. Apollonius of Perga, pp. xxxvi.--xxxvifi.
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could, in that ca_e at least, be found by the same method as

that used by Archimedes (0_ Conoids and Sp£e_roids, Prop. 8) in
the rather more general case where the perpendicular from the

vertex of the cone on the plane of the given elliptic section does
not necessarily pass through the focus.

(2) Another natural conjecture would be to suppose that, by
means of the proposition given by Pappus, Euclid found the locus
of a point whose distance from a given point i8 in a given ratio

to its distance from a fixed pla_. This would have given surfaces

identical with the conoids and spheroids discussed by Archimedes

excluding the spheroid generated by the revolution of an ellipse
abeut the minor axis. We are thus brought to the same point as

Chasles who conjectured that the S'urf_ce-loci of Euclid dealt with
surfaces of revolution of the second degree and sections of the

same*. Recent writers have generally regarded this theory as

improbable. Thus Helberg says that the conoids and spheroids

were without any doubt discovered by Archimedes tfimself; other-
wise he would not have held it necessary to give exact definitions

of them in his introductory letter to Dositheusi hence they could
not have been the subject of Euclid's treatiset. I confess I think

that the argument of Heiberg, so far from being conclusive against
the probability of Chasles' conjecture, is not of any great weight.

To suppose that Euclid found, by means of the theorem enunciated
and proved by Pappus, the locus of a point who_ distance from

a given point is in a given ratio to its distance from a fixed plane

does not oblige us to assume either that he gave a name to the
loci or that he investigated them further than to show that sections

through the perpendicular from the given point on the given plane

were conics, while sections at right angles to the same perpendicular

were circles ; and of course these facts would readily suggest them-

sel, es. Seeing however that the object of Archimedes was to
find the volumes of segments of each surface, it is not surprising

that he should have preferred to give a definition of them which

would indicate their form more directly than a description of them
as loci would have done; and we have a parallel case in the dis-

tinction drawn between conics as such and conics regarded as loci,

which is illustrated by the different titles of Euclid's Conics and

the So//d Lovi of Aristaeus, and also by the fact that Apollonius,

**Aperqu historique, pp. 273, 4.
t Litterargeschichtliche Stud_en ilberEukhd, p. 79.

H.A. e
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though he speaks in his preface of some of the theorems in his

Conics as useful for the synthesis of 'solid loci' and goes on to

mention the 'locus with respect to three or four lines,' yet enun-

ciates no proposition stating that the locus of such and such a point
is a co,de. There was a further special reason for defining the

conoids and spheroids as surfaces described by the revolution of
a conic about its axis, namely that this definition enabled Archi-

medes to include the spheroid which he calls 'flat' (_rtv)_ar_

_r_rttpOEt_), i.e. the spheroid described by tile re_olution of an
ellipse about its _ti_or axis, which is not one of the loci which

the hypothesis assumes Euclid to have discovered. Archimedes'

new definition had the incidental eft_ct of making tile nature of

the sections through and perpendicular to the axis of revolution
even more obvious than it would be from Euclid's supposed way

of treating the surfaces; and this would account for Archimedes'
omission to state that the two classes of sections had been known

before, for there would ha_e been no poin_ in attributing to Euclid
the proof of propositions which, with the new definition of the

surfaces, became self-evident. The further definitions given by

Archimedes may be explained on the same principle. Thus the
ax/s, as defined by him, has special reference to his definition of

the surfaces, since it means the ax/s of revoh_tion, whereas the

axis of a conic is for Archimedes a diameter. The envelaping cone.

of the hyperboloid, which is generated by the revolution of the
asymptotes about the axis, and dm centre regarded as the point

of intersection of the asymptotes were useful _o Archimedes' dis-
cussion of the surfaces, but need not have been brought into

Euclid's description of the surfaces as loci. Similarly with the

ax/s and vertex of a segment of e_ch surface. And, generally, it

seems to me that all the definitions Wen by Archimedes can be

explained in like manner without prejudice to the supposed dis-

covery of three of the surfaces by Euclid.
I think, then, that we may still regard it as possible that

Euclid's Surface-loci was concerned, not only with cones, cylinders

and (probably) spheres, but also (to a limited extent) with three

other surfaces of revolution of the second degree, viz. the paraboloid,

the hyperboloid and the prola_ spheroid. Unfortunately however

we are c_nt_ned to the statement of possibilities; and certainty
can hardly be attained unless as the result of the discovery of
fresh documents.
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§ 5. TWO mea_ proportionals in continued proportion.

Archimedes assumes the construction of two mean proportionals

in two propositions (On tl_e Sphere and Cylinder IL 1, 5). Perhaps
he was content to use the constructions _ven by Archytas,

Menaechmus*, and Eudoxus. It is worth noting, however, that

Archimedes does not introduce the two geometric means where
they are merely convenient but not necessary; thus, when (On the

and Cylinder ,. 34)he has to substitute for a ratio (_)',Spt_ere

where fl>7, a ratio between fines, and it is sufficient for his

that the required ratio cannot be greater than (_)'- butpurpose

may be less, he takes two arithmetic means between /_, _, as 5, c,
and then assumest as a known result that

* The constructions of Archytas and Menaochmus are given by Eutocius
[Archtmedes, Vol. m. pp. 92--102] ; or see Apollonius of Perga, pp. XlX--xxlii.

t The proposition is proved by Eutocius; see the note to On the Sphere
and Cylinder L 34 (p. 42).

e2



CHAPTER IV.

ARITHMETICIN ARCHIMEDES.

Two of the treatises, the Measurement of a circle and the
Sand-reckoner, are mostly arithmetical in content. Of the Sand-

reckoner nothing need be said here, because the system for expressing
numbers of any mag'nitude which it unfolds and applies cannot be
better described than in the book itself; in the .l[easurement of a

circle, however, which involves a great deal of manipulation of
numbers of considerable size though expressible by means of the
ordinary Greek notation for numerals, Archimedes merely _ves the
results of the various arithmetical operations, multiplication, extrac-
tion of the square root, etc., without setting out any of the operations
them_lves. Various interesting questions are accordingly involved,
and, for the convenience of the reader, I shall first give a short
account of the Greek system of numerals and of the metl_ods by

,I

which other Greek mathematicians usually performed the vamous
operations included under the general term koTtaTt_ (the art of,
escalating), in order to lead up to an explanation (1) of the way in
which Archimedes worked out approximations to the square roots of
large numbers, (2) of his method of arriving at the two approximate

values of _/3 which he simply sets down without any hint as to how

they were obtained*.
\

* InwritingthischapterIhavebeenunderparticularobligationstoHultsoh's
articlesArithmetics andArchzmedesin Pauly-Wlssowa'sReal-Encyclopadte,H_
1, as wellas to the samescholar'sarticles(1) D_eNdherungswertheirrationaler
QuadratwurzelnbeiArchimedesin the Nachrichtenvander kgl. Gesellschaftde/"
Wissenschaftenzu G_ttingen(1893),pp. 367sqq., and (2) Zur Kreismessungdes
Archimedesin the Zeitschrift filr Math. u. Physik (Htst. htt. Abtheilun9)xxxix.
(1894),pp. 121 sqq. and 161 sqq. I have also made use, in the earher part
of the chapter,of Nesselmazm'sworkDie Algebrader Griechenand the histories
of CantorandOow.
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§ 1. Greek numeral system.

It is well known that the Greeks expressed all numbers from 1
to 999 by means of the letters of the alphabet reinforced by the

addition of three other signs, according to the following scheme, in
which however the accent on each letter might be replaced by a
short horizontal stroke above it, as _.

a', fl', 7', 5', ¢', s-', _', 7', 0' are 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.

t', _', _.', /if, v r, _', o p, _r', ,,q' 10, 20, 30, ........ 90 ,,
p * t t p

p, _, _, v', _', X, _b', to, _',, 100, 200, 300, ...... 900 ,,

Intermediate numbers were expressed by simple juxtaposition
(representing in this ease addition), the largest number being placed

on the left, the next largest following it, and so on in order. Thus

the number 153 would be expressed by pv),' or pv),. There was no

sign for zero, and therefore 780 was q_r', and 306 ,_-' simply.

Thousands (Xd_M3_) were taken as units of a higher order, and

1,000, 2,000, ... up to 9,000 (spoken of as X_'kto_,3_XO, coc,_.r),.) were
represented by the same letters as the first nine natural numbers

but with a small dash in front and below the line; thus e.g. ,3' was

4.,000, and, on thee same principle of juxtaposition as before, 1,823 was

expressed by a_x 7' or nooK-/, 1,007 by a_', and so om

Above 9,999 came a myriad (l_vp_d_), and 10,000 and higher

numbers were expressed by using the ordinary numerals with the

substantive i_vptd$¢_ taken as a new denomination (though the words
I_(Jpto_, _w'_ip,ot, 1"pt(rlz(_ptot, x.r.k, are also found, following the

analogy of Xl_.tot_ 3t_X[_tot and so on). Various abbreviations were

used for the word _,vptd_, the most common being M or My; and,
where this wa._ used, the number of myriads, or the multiple of

10,000, was generally written over the abbreviation, though some-

times before it and even after it. Thus 349,450 was MOw '_.

Fractio_zs (_.rtrrd) were written in a variety of ways. The most
i usual was to express the denominator by the ordinary numeral with

two-accents aifix,ed. When the numerator was unity, and it was

therefore simply a question of a symbol for a single word such as

Diophantus denoted myriads followed by thousands by the ordinary signs
for numbers of units, only separating them by a dot from the thousands. Thus

for8,069,000 he writes _. fi, and _'r- ,a_o_ for 331,776. Sometimes myriads
wererepresa?ltedby the ordinary letters with two dots above, as/; = 100myriads
(1,000,000), and myriads of myriads with two pairs of dots, as _'for 10 myriad-
myriads (1,000,000,000).
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_p(rov, _, there was no need to express the numerator, and the

symbol was y"; similarly _-"=_, t," = Iv,] and so on. When the
numerator was not unity and a certain number of fourths, fifths,
etc., had go be expressed, the ordinary numeral was used for the

numerator; thus 0' ta"= _, _' oa"= ._. In Heron's Geometry the
denominator was writ_n twice in the latter class of fractions ; thus

t • •

'z (8_o -a'qt_ra)...... was /_ _ c , 3323(_.C_rT__'ptaKOO'T_Tpt_rttIcy or ctKoo-rrp_a

.rptaKoo'_'dTptl"a) was Ky' _.-y" _'T'" The sign for ½, _gurv, is in
Archimedes, Diophantus and Eutocius L", in Heron £ or a sign

similar to a capital S '_.
A favourite way of expressing fractions with numerators greater

than unity was to separate them into component fractions with

numerator unity, when juxtaposition as usual meant addition. Thus
1 1 .

was written L"a"-½+_; _ was C3"7/"tr"=½+_+_+_s,

Eutocius writes L"_$" or ½ for ¢_-,ssand so on. Sometimes the
same fraction was _parated into several different sums; thus in

Heron (p. 119, ed. Hultsch) =.z_'_s is variously expressed as

I ! +ol

and (e) ½+ _ + _T + a-_. + .'z½_.

Ser,agesimalfractio_s. This system has to be mentioned because

the only instances of the working out of some arithmetical operations
which have been handed down to us are calculations expressed in

terms of such fractions; and moreover they are of special interest

as having much in common with the modern system of decimal

fractions, with the difference of course that the submultiple is 60
instead of 10. The scheme of sexagesimal fractions was used by the

Greeks in astronomical calculations and appears fully de_eloped in

the o'_v'ra_t¢ of Ptolemy. The circumference of a circle, and along

with it the four right angles subtended by it at the centre, are

divided into 360 parts (rtx_t_ara or /xo_pat) or as we should say degrees,
each t_o_pa into 60 parts called (first) sixtieths, (_rpYrra) l_q_oo'r_,

or minutes (X_rrd), each of these again into 3_rtpa _q_oo'rd (seconds),
and so on. A similar division of the radius of the circle into 60

* Diophantus has a general method of expressing ffaeUons which is the
exact reverse ot modern praet_es; the denominator is written above the

numerator, thus _= 5/3, xa= 21125, and px_'._ =1,270,568/I0,816. Some-
times he writes down the numerator and then introduces the denominator

with dr _,op@or ttop_or,e.g. ft. ,_ top. X3,.,a_o¢ = 3,069,000/331,776.
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parts (T/z_tlara) was also made, and these wen each subdivided into

sixtieths, and so on. Thus a convenient fractional system was
available for general arithmetical calculations, expressed in units of

any magnitude or character, so many of the fractions which we

should represent by _10, so many of those which we should write

(_)'_, (_)_, and so oil to any extent. It, is therefore not surprising
that Ptolemy should say in one place "In general we shall use the

method of numbers according to the sexagesimal manner because of

the inconvenience of the [ordinary] fractions." For it is clear that
the successive submultiples by 60 formed a sort of frame with fixed

compartments into which any fractions whatever could be located,
and it is easy to see that c.g in 'additions and subtractions the

sexagesimal fractions were almost as easy to work with as decimals
are now, 60 units of one denomination being equal to one unit of

the next higher denomination, and "carrying" and "borrowing"

being no less simple than it is when the number of units of one
denomination necessary to make one of the next higher is 10 instead

of 60. In expressing the units of the circumference, degrees, _o;paL

or the syn]t_)l fi was generally used along with the ordinary numeral
which had a stroke above i_; _inutes, seco_Ms, etc. were expressed

by one, two, etc. accents affixed to the numerals. Thus f_B= 2 °,

/totO_3v/x_Ffl' _" = 47° 42' 40". Also where there was no unit in any

particular denomination O was used, signifying o_Sc_t'tL_oT#a, o_$_v

i$,/,oo-rgr and the like ; thus 0 a' fl" O"' - 0 ° 1' 2" 0'". Similarly, for
the units representing the divisions of the r'oxtius the word vg_ttara

or some equivalent was used, and the fractions were represented as

before ; thus "rg_l_dro_v$_ $' rE" = 67 (units) 4' 55".

§ 2. Addition and Subtraction.

There is no doubt that, ia writing down numbers for these

purposes, vhe several powers of 10 were kept separate in a manner

corresponding practically to our system of numerals, and the
hundreds, thousands, etc., were written in separate vertical rows.

The following would therefore be a typical form of a sum in addition ;

arKS'= 1424

p T' 103

M flalr a' 12281
T

M X' 30030

M yogt _/' 43838
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and the mental part of the work would be the same for the Greek as
for us.

Similarly a subtraction would be represented as follows :
0

M,TX_,_"= 93636

M,yv 0' 23409
¢
M crK_' 70227

§ 3. Multiplication.

A number of instances are given in Eutocius' commentary on

the Measurement of a circle, and the similarity to our procedure is
just as marked as in the above cases of addition and subtraction.

The multiplicand is written first, and below it the multiplier preceded

by _Trl(= "into"). Then the highest power of 10 in the multiplier
is taken and multiplied into the terms containing the separate

multiples of the successive powers of 10, beginning with the highest

and descending to the lowest ; after which the next highest power
of 10 in the multiplier is multiplied into the various denominations

in the multiplicand in the same order. The same procedure is

followed where either or both of the numbers to be multiplied
contain fraction_, Two instances from Eutocius are appended from

which the whole procedure will be understood.

(1) ¢_' 780
_Tr__Tr' × 780

_0 e

MMg-' 490000 56000

M '. ,_-_'v 56000 6400

,7t7' L"8" 3013_ ¼ [= 3013_]

JTr_,7t7' L"8" x_3013_
_ .,
MM0a¢_ 9,000,000 30,000 9,000 1500 750

_px,'_ L" 30,000 100 30 5 2½
0k0'a' L" L"_" 9,000 30 9 1½ ½+ ¼

,,,,¢,','a'_"s",f 1,5oo _ 1½ ¼ I-
¢,,'_L" L"_",7",r" 750 2½ _½+¼ __._

[6/_] M,,SX.a-_tr" [9,041,250 + 30,137½ + 9,0413 + 1506 + ½+ ¼+ _-
+ 753+t:+_-+_',d

= 9,082,689_.
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One instanceof a similarmultiplicationof numbers involving

fractionsmay be given from Heron (pp.80, 81). It isonly one of

many, and, forbrevity,the Greek notationwillbe omitted. Heron

has tofindthe productof4_ and 7_, and proceedsasfollows:

4.7 = 28,

4. _ : -2_-_,

_'_ 7 = _#_,

33 62__204_ =___+__64" _'4-- --Wit--- " _4" " _t"

The result is accordingly
o 62 62 1

28 + _ + _-_. _ = 28 + 7 + _- + _ _. _-_-
6_ 62=35+_, + _. _.

The m_ltiplication of 37 ° 4' 55" (in the sexagesimal system) by

itself is performed by Theon of Alexandria in his commentary on

Ptolemy's cr{n,ra_t_ in an exactly similar manner.

§ 4. Division.

The operation of dividing by a number of one digit only was

easy for the Greeks as for us, and what we call "long division" was

with them performed, mutatis mutandis, in the same way a_ now
with the help of multiplication and subtraction. Suppose, for

instance, that the operation in the first case of multiplication given

above had to be reversed and that MT/v' (608,400) had to be divided

by q_r' (780). The terms involving the different powers of 10 would

first question would be, how many times will 7 hundreds go into 60

myriads, due allowance being made for the fact that the 7 hundreds
have 80 behind them and that 780 is not far short of 8 hundreds

The answer is 7 hundreds or ¢', and this multiplied by the divisor

¢_r' (780) would give Me' (546,000) which, subtracted from M?/v'

(608,400),leaves the remainder M,flv (62,400). This remainder has
then to be divided by 780 or a number approaching 8 hundreds, and

8 tens or _r' would have to be tried. In the particular case the

result would then be complete, the quotient being q_r' (780), and

there being no remainder, since _r' (80) multiplied by q_r' (780) gives

the exact figure M,flv' (62,400).
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An actual case of long division where tile dividend and divisor

contain sexagesimal fractions is described by Theon. The problem
is to divide 1515 20' 15" by 25 12' 10", and Theon's account of the

process comes to this.

Divisor Dividend Quotient

25 12' 10" 1515 20' 15" First term 6025.60 = 1500
Remainder 15 = 900'

Sum 920'
12'. 60 = 720'

Remainder 200'
10". 60 = 10'

Remainder 190' Second term 7'
25.7' = 175' I

15' = 900"

Sum 915"

12'. 7' 84"

Remainder 831"
10". 7' 1" 10'"

9 ..... Third

Remainder 8.9 50 term 33"
25.33" 825"

Remainder 4" 50'" = 290'"

12' .33" 396'"

(too great by) 106'"

Thus the quotient is something less than 60 7' 33". It will be
observed that tile difference betwecn this operation of Theon's and

that followed in dividing M/1J (608,400) by J/_r' (780) as above is
that Theon makes three subtractions for one term of the quotient,
whereas the remainder was arrived at in the other ease after one

subtraction. The result is that, though Theon's method is quite

clear, it is longer, and moreover makes it less easy to foresee what

will be the proper figure to try in the quotient, so that more time

would be apt to be lost in making unsuccessful trims.

§ 5. Extraction of the square root.

We are now in a position to see how the operation of extracting

the square root would be likely to be attacked. First, as in the case
of division, the given whole number whose square root is required

would be separated, so to speak, into compartments each containing
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such and such a number of units and of the separate powers of 10.

Thus there would be so many units, so many tens, so many hundreds,

etc., and it would have to be berne in mind that the squares of
numbers from 1 to 9 would lie between 1 and 99, tile squares of
numbers from 10 to 90 between 100 and 9900, and so on. Then the

first term of the square root would be some number of tens or
hlmdreds or thousands, and so on, and would have to be found in

much the same way as the first term of a quotient in a "long

division," by trial if necessary. If A is the number whose square
root is required, while a represents the first term or denomination of

the square root and x the next term or denomination still to be
found, it would be necessary to use the identity (a + x) _= a" + 2ax + x 2

and to find x so that 2ax +x _ might be somewhat less than the

remainder A-a _. Thus by trial the highest possible value of x

satisfying the condition would be easily found. If that value were
b, the further quantity 2ab + b2 would have to be subtracted from

the first remainder A - a2, and from the second remainder thus left

a third term or denomination of the square root would have to be

derived, and so on. That this was the actual procedure adopted is
clear from a simple ca.qe given by Theon in his commentary on the

onSvra_L_, llere the square root of 144 is in question, and it is

obtained by means of Eucl. II. 4. The highest possible denomina-

tion (i.e. power of 10) m the square root is 10 ; 102 subtracted from
144 leaves 44, and this must contain not only twice the product of

10 and the next term of the square root but also the square of that

next term itself. Now, since 2.10 itself produces 20, the di_'ision

of 44 by 20 suggests 2 as the next term of the square root ; and
this turns out to be the exact figure required, since

2.20+ 2_= 44.

The same procedure is illustrated by Theon's explanation of

Ptolemy's method of extracting square roots according to the

sexagesimal system of fractions. The problem is to find approxi-

mately the square root of 4500 /zo?pae or degrees, and a geometrical
figure is used which makes clear the essentially Euclidean basis of

the whole method. Nesselmann gives a complete reproduction of

the passage of Theon, but the following purely arithmetical represen-

tation of its purport will probably be found clearer, when looked at

side by side with the figure.

Ptolemy has first found the integral part of _f_00 to be 67.
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Now 67_= 4489, so that the remainder is 11. Suppose now that

the rest of the square root is expressed by means of the usual
sexageslma] fractions_ and that we may therefore put

x y
_/45Ob = J_i-f= 67 +_5 + 602'

2.67x
where x, y are yet to be found. Thus x must be such that 6O

11.60
is somewhat less than 11, or x must be somewhat less than ....

2.67
330

or _-, which is at the same time greater than 4. On tria], it

turns out that 4 will satisfy the conditions of the problem, namely

that 67 + 60 must be less than 4500, so that a remainder will

be left by means of which y may be found.

67o 4' 55"

4189 268'

I .....

_4' !f268' 16"

ol ' x

___55" 3688" 40'" ]

2.67.4 (4)'Now 11 60 _ is the remainder, and this is equal to

11.60_-2.67.4.60- 16 7424

60_ 60_

Y approximates to 60 _ ,Thus we must suppose that 2 67 + 60-2

or that 8048y is approximately equal to 7424.60.
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Therefore y is approximately equal to 55. We have then to
subtract

4\ 55 //55 _' 442640 30252 67+6-0)6-_ +\60 _] ' or 60_ * 60_ ,

7424
from the remainder _- above found.

The subtraction of 442640 7424 gives 2800 46 40--60_- from -_ -_-, or_ + 60--3;

3025

but Theon does not go furtherand subtractthe remaining -_ ,

55

insteadof which he merely remarks that the square of 6_
46 40

approximatesto60_ + 60--a. As a matter of fact,ifwe deduct the

3025 2800,--6_)T from -_(_- so as to obtain the correct remainder, it is

164975
found to be ....

604

To ._how the power of this method of extracting square roots by
means of sexagesimal fractions, it is only necessary to mention that

103 55 23

Ptolemy gives 60 + 6(}'-'+ 6-_ as an approximation to _/3, which

approximat,on is equivalent to 1"7320509 in the ordinary decimal
notation and is therefore correct to 6 places.

But it is now time to pass to the question how Archimedes

obtained the two approximations to the value of _/3 whmh he
assumes in the Measurement o/ a circle. In dealing with this

subject I shall follow the historical method of explanation adopted

by Hultsch, in preference to any of the mostly a priori theories
which the ingenuity of a multitude of writers has devised at
dit_erent times.

§ 6. Early investigations of surds or incommensurables.

From a passage in Proclus' commentary on Eucl. L_ we learn
that it was Pythagoras who discovered the theory o/irrationals

(_ rJv d_J_oJv 7rpaTftarct'a). Further Plato says (T$_aetetus 147 v),
"On square roots this Theodorus [of Cyrene] wrote a work in

p. 65 (ed. Frledlein).
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which he proved to us, with reference to those of 3 or 5 [square] feet

that they are incommensurable in length with the side of one square
foot, and proceeded similarly to select, one by one, each [of the other

incommensurable roots] as far as the root of 17 square feet, beyond

which for some reason he did not go." The reason why _/2 is not

mentioned as an incommensurable square root must be, as Cantor

says, that it was before known to be such. -We may therefore
conclude that it was the square root of 2 which was geometrically

constructed by Pythagoras and proved to be incommensurable with

the side of a square in which it represented the diagonal. A clue

to the method by which Pythagoras investigated the value of r_

is found by Cantor and Hultsch in tile famous passage of Plato
(Rep. viii. 546 B, c) about the 'geometrical' or 'nuptial' number.

Thus, when Plato contrasts the _r_ and _pTrro_ _d_crpo_ r_

_re/_rd_o_, he is referring to the diagonal of a square whose side
contains five units of length ; the _t,p_ro_ _J_crpo_, or the irratmnal

diagonal, is then _/50 itself, and the nearest rational number is

_/50_-1, which is the _rr_ _crpo_. We have herein the

explanation of the way in which Pythagoras must have made the

first and most re_dily comprehensible approximation to _,/2; he

must have taken, instead of 2, an improper fraction equal to it but
such that the denominator was a square in any case, while the

numerator was as near as possible to a complete square. Thus
50

Pythagoras chose _, and the first approximation to _/2 was
, 7

accordingly 7, it being moreover obvious that _,/2 >,5. Again,

Pythagoras cannot have been unaware of the truth of the
proposition, proved in Euel. n. 4, that (a + b) 2= a2+ 2ab + b_, where.

a, b are any two straight lines, for this proposition depends solely

upon propositions in Book I. which precede the Pythagorean

proposition L 47 and which, as the basis of I. 47, must necessarily
have been in substance known to its author. A slightly different

geometrical proof would give the formula (a- b)_= a'- 2ab + b_,
which must have been equally well known to Pythagoras. It could
not therefore have escaped the discoverer of the first approximation

_/50- 1 for _/5--0 that the use of the formula with the positive sign

would give a much nearer approximation, viz. 7 + _4' which is only
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greater than _ to the extent of 1-4 " Thus we may properly

assign to Pythagoras the discovery of the fact represented by

7 11> ,j_ > 7.

The consequential result that _/_> _1 _/b_)-_l is used byo

Aristarchus of Samos in the 7th proposition of his work 0_ t]_

size and distances of the sun a_wl moon _.

With reference to the investigations of the values of t_, ,,/5,

_/6, ..... ,,/17 by Theodorus, it is pretty certain that _/3 was

geometrically represented by him, in the same way as it appears

Part of the proof of thin proposition was a sort of loretaste of the first part

of Prop. 3 of Archamcdes' Measurement of a

circle, and the substance of it is accordingly AIHI.... __. ZV,/
appended as reproduced by Hultsch.

= ½Z KB E, Z FBE = 3°, and A L' Is perpen&cu-
lar m BF so that the triangles A CB, BEF are

e milar I I //
Ariatarchus seeks to prove that I I

AB:BC> 18:1.

If R denote a right angle, the angles KBE,
30

HBE, FBE are respectively _0R, _R, _R. B

Then ,HE : FE > Z HBE : Z FBE

[This is assumed as a known lemma by Aristarehus as well as Archimedes ]

Therefore HE : FE > 15 : 2 ............ (a).

.Now, by construction, BK"= 2BE 'z.

Also [Eucl. yr. 3] BK : BE=KII : HE ;

whence KII = ,_f2 HE.

And, since _/_ > _ ,50-1

KIt:HE >7:5,

so that KE : EH > 12 : 5 .............. (fl).

From (a) and (fl), ex aequali,

KE " FE > 18:1.

Therefore, since BF > BE (or KE),

BF : aVE > 18:1,

so that, by similar triangles,
AB :BC> 18:1.
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afterwards in Archimedes, as the perpendicular from an angular

point of an equilateral triangle on the opposite side. It would

thus be readily comparable with the side of the " 1 square foot"
mentioned by Plato. The fact also that it is the side of three.

square fee_ (Tp/Trov¢_va_L_) which was proved to be incommensurable

suggests that there was some special reason in Theodorus' proof for
specifying feet, instead of units of length simply; and the ex-

planation is probably that Theedorus subdivided the sides of his

triangles in the same way as the Greek foot was divided into
halves, fourths, eighths and sixteenths. Presumably therefore,

50

exactly as Pythagoras I_ad approximated to _/2 by putting
48

for 2, Theodorus started from the identity 3 = ]_. It would then
be clear that

,/% ,_/_ < 1 i.e. i-- , •

To investigate _/48 further, Theedorus would put it in the form

_/4-9- 1, as Pythagoras put _/;5-G into the form _/49 + 1, and the
result would be

J48(=J49-1)<7 114"

We know of no further investigations into incommensurable
square roots until we come to Archimedes.

§ 7. Archimedes' approximations to _3.

Seeing that Aristarchus of Samos was still content to use the

first and very rough approximation to _ discovered by Pythagoras,
it is all the more astounding that Anstarchus' younger contemporary

Archimedes should all at once, without a word of explanation, give
out that

1351 265

780>"/3> 1-5-_'

as he does in the ._[easurement of a circle.

In order to lead up to the explanation of the probable steps by

which Archimedes obtained these approximations, Hultsch adopts

the same method of analysis as was used by the Greek geometers in

solving problems, the method, that is, of supposing the problem
solved and following out the necessary consequences To compare
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265 1351
the two fractions ]-53 and -_, we first divide both denominators

into their smallest factors, and we obtain

780 = 2.2.3.5.13,

153 = 3.3.17.

We observe also that 2.2.13 = 52, while 3.17 = 51, and we may
therefore show the relations between the numbers thus,

780- 3.5.52,

153 = 3.51.

For convenience of comparison we multiply the numerator and
265

denominator of 1-_ by 5 ; the two original fractions are then
1351 1325

--- and ----
15.52 15.51 '

so that we can put Archimedes' assumption in the form

13'A>15,z >1325
52 51 '

and this is seen to be equivalent to

6 - 1 1
52> 15_> 26- 5_.

Now 26- = 26_-1+ _ , and the latter expression

is an approximation to _1.

- _2 > _/26_- 1.
We have then 26

26-12 was compared with 15_f3, and we want an ap-
As

proximation to _f3 itself, we divide by 15 and so obtain

1 /_-6,_--] . /_1 /675 _/_, and it follows
But i-5 =%/ 225 =%/225 =

dlat 1-5

The lower limit for _/3 was given by

H.A, .f
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and a glance at this suggests that it may have been arrived at by
simply substituting (52- 1) for 52.

Now as a matter of fact the following proposition is true. If
a" +__b is a whole number which is not a square, while a j is the nearest

square number (above ar below the .first number, as She case may be),
then

b b

a+___a> _/_+b > a+ 2a +__-1"

Hultsch proves this pair of inequalities in a series of propositions
formulated after the Greek manner, and there can be little doubt

that Archimedes had discovered and proved the same results in

substance, if not in the same form. The following circumstances
confirm the probability of this assumption.

(1) Certain approximations given by Heron show that he

knew and frequently used the formula
b

,,/aS + booa +.Ta ,

(where the sign oo denotes "is approximately equal to ").
1

Thus he gives _/_ oo 7 + i-4'

16'

11

16"

b
(2) The formula _]a_+ b¢_ a + 2T2-1 is used by the Arabian

Alkarkhi (llth century) who drew from Greek sources (Cantor,
p. 719 sq.).

It can therefore hardly be accidental that the formula

b b

a+ 2a> 4a_+-b> a+ 2a+ 1

gives us what we want in order to obtain the two Arehlmedcan

approximations to _/3, and that in direct connexion with one
another*.

* Most of the a Fr/Or/ theories as to the origin of the approximations are
open to the serious obieetion that, as a rule, they give series of approxlm_te
values in which the two now in question do nob follow consecutively, but are
separated by others which do not appear in Archimedes. Hultsch's explanation
is much preferable as being free from this objection. But it is fair to gay that
the actual formula used by Hultsoh appears in Hunmth's solution of the puzzle
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We are now in a position to work out the synthesis as follows.

From the geometrical representation of _/3 as the perpendicular

from an angle of an equilateral triangle on the opposite side we

obtain _/by_--Z--_= _/_ and, as a first approximation,

1 _fS.2-_>

Using our formula we can transform this at once into
1 1

_/3>2-_-i, or 2-3.

Archimedes would then square (2 - _), or _, and would obtain
25 27
-_O, which he would compare with 3, or -_ ; i.e. he would put

_/3= J_-+ 2 and would obtain

To obtain a still nearer approximation, he would proceed in the

/26V 676 670
same manner and compare \15]' or 2-25' with 3, or ._25' whence it

would appear that _/_ = . _ 1%/ 225 '

1351 > J3.
that is, 780

The application of the formula would then give the result

,/3>i3 26 52-1 '
1326 - 1 265

that is, J3> 15.51 ' or 1_"

The complete result would therefore be

1351 265
780> d_ > i53

(Die ]3erechnung irrationaler Quadratwurzeln vor der Herrschaft der Decimal
br//¢he, Kiel, 1884, p, 21; of. Ueber dos Ausziehen der Quadratwurzel bei
Grieehen und Indern, Hadersleben, 1883), and the same formula is implicitly
used in one of the solutions suggested by Tannery (Bur la mesure du eercle
d'ArchivOMe in M_moires de la sovi_tg de_ sciences phys,ques et naturelles de
Bordeaux, 2" s_'ie, xv. (1882), p. 313-$37}.

f2



L_XXlV INTRODUCTION.

Thus Archimedes probably passed from the first approximation

7 5 5 26 26 12_51to _, from _ to 1"5' and from ]_ directly to Lov , the close-st

approximation of all, from which again he derived the less close
265

approximation 153" The reason why he did not proceed to a still
1351

nearer approximation than 7-80- is probably that the squaring of

this fraction would have brought in numbers much too large to be
conveniently used in the rest of his calculations. A similar reason

5 7
will account for his having started from _ instead of 4; if he had

used the latter, he would first have obtained, by the same method,

7 x 97 _/3; the squaring_r-3=J4_, and thence '--_-4T_->J3, or :_>
97

of 56 would have given _/3- _/9-_C-561 , and the corresponding
18817

approuimation would have given 56. 194' where again the numbers

are inconveniently large for his purpose.

§ 8. Approximations to the square roots of large
numbers.

Archimedes gives in the Measurement of a circle the following
approximate values :

(1) 3013_> 4_I,

(2) 18381a[ > _/33809_,

(3) 1oo9#> Ji-6-i8_-0_,

(4) 2017¼ > _/_4-_,

(5) 591 _-< d_978b,

(6) Il72_ < _/1373-9-4-3_-,

(7) 2339¼ < _/54721-32T' _.

There is no doubt that in obtaining the integral portion
of the square root of these numbers Archimedes used the method

based on the Euclidean theorem (a + b)' = a* + 2ab + b* which has
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alreadybeen exemplifiedin tileinstancegiven above from Theon,

where an approximationto J4-50_)isfound insexagesimalfractions.

The method doesnotsubstantiallydifferfrom thatnow followed;but

whereas,to take the firstcase,_/9---O_-321,we can atonce seewhat

willbe the number ofdigitsinthe squarerootby marking offpairs

ofdigitsinthe givennumber, beginningfrom the end,the absence

ofa signfor 0 in Greek made the number of digitsin the square

rootlesseasytoascertainbecause,aswrittenin Greek,the number

Mfl_Ka'only containssixsignsrepresentingdigitsinsteadof seven.
Even inthe Gi_el_notationhowever itwould not be difficultto see

that,of the denominations,units,tens,hundreds,etc.in the square

root,the unitswould correspondto Ka'in the originalnumber,the

tens to fir,the hundreds to M, and the thousandsto M. Thus it

would be clearthat thesquarerootof9082321 must be ofthe form

1000x + 100y + 10z + w,

where x, y, z, w can only have one or other of the values 0, 1, 2,... 9.

Supposing then that x is found, the remainder N- (1000x) :, where

zV is the given number, must next contain 2. 1000x. 100y and

(100y)', then 2(1000x+ 100y). 10z and (10z) _, after which the
remainder must contain two more numbers similarly formed.

In the particular case (1) clearly x=3. The subtraction of

(3000) _ leaves 82321, which must contain 2. 3000. 100y. But, even
if y is as small as l, this product would be 600,000, which is greater

than 82321. Hence there is no digit representing hundreds in the
square root. To find z, we know that 82321 must contain

2. 3000.10z + (10z) 2,

and z has to be obtained by dividing 82321 by 60,000. Therefore
= 1. Again, to find w, we know that the remainder

(82321 - 2. 3000.10 - 10_),

or 22221, must contain 2. 3010w .-w _, and dividing 22221 by

2. 3010 we see that w=3. Thus 3013 is the integral portion of

the square root, and the remainder is 22221-(2. 3010.3 + 32), or
4152.

The conditions of the proposition now require that the approxi-

mate value to be taken for the square root must not be less than
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the real value, and therefore the fractional part to be added to 3013
must be if anything too great, l_Towit is easy to see that the

1 1(7fraction to be added is greater than _ because 2. 3013._ + _ is

less than the remainder 4152. Suppose then that the number

required (which is nearer to 3014 than to 3013) is 3014 -p-,
q

and P- has to be if anything too small.

Now (3014)' = (3013)' + 2. 3013 + 1 = (3013)' + 6027

= 9082321 - 4152 + 6027,

whence 9082321 = (3014) _- 1875.
b

By applying Archimedes' formula _/_+ b < a + 2a' we obtain

3014- 18752. 301_> J_f"
1875

The required value P-has therefore to be not greater than 602--8"q

It remains to be explained why Archimedes put for P-the value 1q
1507

which is equal to 6-0-_" In the first place, he evidently preferred

fractions with unity for numerator and some power of 2 for
denominator because, they contributed to ease in working, e.g. when
two such fractions, being equal to each other, had to be added.

9 1
(The exceptions, the fractions il and _, are to be explained by

exceptional circumstances presently to be mentioned.) Further, in
the particular case, it must be remembered that in the subsequent

work 2911 had to be added to 3014 -p- and the sum divided by 780,
q

or 2.2.3.5.13. It would obviously lead to simplification if a
factor could be divided out, e.g. the best for the purpose, 13. Now,
dividing 2911 + 3014, or 5925, by 13, we obtain the quotient 455,

and a remainder 10, so that 10 -p- remains to be divided by 13.
q

Therefore P-has to be so chosen that 10q-p is divisible by 13, while
q

1875
P approximates to, but is not greater than, 6028" The solutionq

p= 1, q= 4 would therefore be natural and easy.
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(2) j_.
The usual process for extraction of the square root gave as the

integral part of it 1838, and as the remainder 2685. As before, it

was easy to see that the exact root was nearer to 1839 than to 1838,
and that

_/_9 = 1838 t + 2685 = 1839 _ - 2. 1838 - 1 + 2685

= 18392 - 992.

The Archimedean formula then gave

992

1839 - ,T_-.1}_39 > _/_.
1

It could not have escaped Archimedes that _ was a near approxima_

992 1984 1 1839 and 1
tion to 367-8 or 735-6' since _ : 7356 ; _ would have satisfied

the necessary condition that the fraction to be taken must be le_
2

than the real value. Thus it is clear that, in taking 1_ as the

approximate value of the fraction, Archimedes had in view the

simplification of the subsequent work by the elimination of a factor.

If the fraction be denoted by p the sum of 1839-_ and 1823, or

3662 --P, had to be divided by 240, i.e. by 6.40. Division of 3662
q

by 40 gave :?2 as remaindcr, and then p, _ had to be so chosen that

22-P- was conveniently divisible by 40, while P- was less than but
q q

992
approximately equal to 367-8" The solution p : 2, q = 11 was easily

seen to satisfy the conditions.

(3) J_.
The usual procedure gave 1018405=10092+324 and the ap-

proximation

324 J T_-84-O5.
1009 20T8 >

324
It was here necessary that the fraction to replace _i-8 should be

1
_eater but approximately equal to it, and _ satisfied the conditions,

while the subsequent work did not require any change in it_
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(4) _/4069284-_.

The usual process gave 4069284_ = 2017 g + 995_ ; it followed
that

36. 995 + ]
'--2_ 2017 > _/4069284_-_,2017 + 36.

and 2017¼ was an obvious value to take as an approximation
somewhat greater than the left side of the inequality.

(5) _/3-4-9450.

In the case of this and the two following roots an approximation

]lad to be obtained which was/ess, instead of greater, than the true

value. Thus Archimedes had to use the second part of the formula

b b

-Z - - ".'a_+i "

In the particular case of _/349456 the integral part of the root is

591, and the remainder is 169. This gave the result

169 169

591 + 2-. 5§1-> _/34_-5() > 591 + 2_591 + 1'

and since 169= 13_, while 2.59l + 1 =7.13 _, it resulted without
further calculation that

J3 9450>
Why then did Archimedes take, instead of this approximation,

another which was not so close, viz. 591_? The answer which the

subsequent working and the other approximations in the first part of
the proof suggest is that he preferred, for convenience of calculation,

1
to use for his approximations fractions of the form 2-_ only. But he

could not have failed to see that to take the nearest fraction of this
1 1

form, _, instead of _ might conceivably affect his final result and

make it less near the truth than it need be. As a matter of fact,
as Hultsch shows, it does not affect the result to take 591_ and to

work onwards from _hat figure. Hence we must suppose that

Archimedes had satisfied himself, by taking 591_ and proceeding on

that basis for some distance, that he would not be introducing any
appreciable error in taking the more convenient though less accurate
approximation 591_.
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(6) jf3 3 .
In this ease the integral portion of the root is 117"2, and the

remainder 359_. Thus, if/_ denote the root,

Rz- 1172+ 359_
2. 1172 + 1

359
_- 1172 + 2.11-72 + 1' afortiori.

359
Now 2.1172 + 1=-2345 ; the fraction accordingly becomes 93-4-,5'

and _ = satisfies the necessary conditions, viz. that it must

be approximately equal to, but not greater than, the given fraction.

Here again Archimedes would have taken 11727 as the approximate

value but that, for the same reason as in the last case, 1172_ was
more convenient.

(7) J5 ' 1325.
The integral portion of the root is here 2339, and the remainder

1211 _-, so that, if/_ is the exact root,

R > 2339 + .......
2. 2339 + 1

> 2339}, afortiori.

A few words may be added concerning Archimedes' ultimate
reduction of the inequalities

667_ 284¼

1 10
to the simpler result 3 _ > ,r _- 3 7] "

1 Ge7½,
As a matter of fact _ = _ so that in the first fraction it was
only necessary to make the small change of diminishing the de-

1
nominator by 1 in order to obtain the simple 3 _.

284¼ _ 1137
As regards the lower limit for ,r, we see that 90-_ - 806§; and

Hultseh ingeniously suggests the method of trying the effect of
increasing the denominator of the latter fraction by 1. This
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1137 379

produces 8_ or 2690 ; and, if we divide 2690 by 379, the quotient

is between 7 and 8, so that
1 379 1

Now it is a known proposition (proved in Pappus vii. p. 689)
a c a a+c

that, if/_ > _, then b > b + d"

Similarly it may be proved that
a-t-c c

b +d > d"

It follows in the above case that

379 379 _ 1 1
2690 > 2690+ 8 > 8'

10 1

which exactly gives 71 > 8'

l0 379 1
and _] is very much nearer to _) than 8 is.

,¥ote on alternative hypotheses with regard to the

apl_'oximations to J-3.

For a description and examination of all the various theories put
forward, up to the year 1882, for the purpose of explaining Archimedes _

approximations to _/3 the reader is referred to the exhaustive paper by
Dr Siegmund Gunther, entitled JDie_uadratischen Irrationalitaten der A lten
und deren Entwiv&elung_methoden (Leipzig, 1882). The same author gives
further references in his A briss d_r GeschizI_e der Mathemati/c und der Natur-

_ha.ften im Altertum forming azi Appendix to Vol. v. Pt. 1of Iwan yon
Mtille_s Handbuch cl¢,rIclasxlachen Altertums-wi_enschaft (Miinchen, 1894).

Gtinther groups the different hypotheses under three general heads :

(1) those which amount to a more or less disguised use of the
method of continued fractions and under which are included the solutions

of De Lagny, MoUweide, Hauber, Buzengeiger, Zeuthen, P. Tannery (first
solution), Heilermann ;

(2) those which give the approximations in the form of a series
1 1 1

of fractions such as a + - + -- + +... ; under this class come the
qt qtqs qtqzqs

solutions of Radieke, v. Pessl, Rodet (with reference to the (_ulvastltras),
Tannery (second solution);
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(3) those which locate the incommenmtrable surd between a greater
and lesser limit and then proceed to draw the hmlts closer and closer.
This class includes the solutions of Oppermann, Alexejeff, SchSnborn,
Hunrath, though the first two are also connected by Gtinther with the
method of continued fractions.

Of the methods so distinguished by Giinther only these need be here
referred to which can, more or less, claim to rest on a historical basis
in the sense of representing apphcations or extensions of principles laid
down in the works of Greek mathematicians other than Archimedes which

have come down to u_ Most of these quasi-historical solutions connect
themselves with the system of side- and dia_onal-numbers (_r_,_vptKoland
$tag_ptsol d#t6po,') explained by Thcon of Smyrna (c. 130 A.D.) in a work
which was intended to give so much of the prnnciples of mathematics as
was necessary for the study of the works of Plato.

The s/de- and diagonaLnun_oers are formed as follows. We start with
two umts, and (a) from tim sum of them, (b) from the sum of twicc
the first unit and once the second, we form two new numbers ; thus

1.1+1=2, 2.1+1=3.

Of these numbers the first is a sMe- and the second a diagonal-number
respectively, or (as we may say)

a2=2 , d_=3.

In the same way as these numbers were formed from al=l , d_=l, suc-
cessive pairs of numbers are formed from %, d2, and so on, in accordance
with the formula

a,,.l=a,+d,, d, +d,,,
whence we have

a_=1.2+3=5, d._=2.2+3=7,

a4= 1.5+7=12 , d4='2.5+7= 17,
and so on.

Theon states, with reference to these numbers, the general proposition
which we should express by the equation

d, _= 2a. 2+_1.

The proof (no doubt omitted because it was well-known) is s_mple. For
we have

d,,_- 2an2= (2a,,_l -i-d__ l)2- 2(a,,_ l-k d,_ l) 2

= 2al,_ 12-- d,_l 2

= - (d._l 2- 2a__1_)

= + (d._2 _-2a.__2), and so on,

while dl_ - 2a12-- -1 ; whence the proposition is established.
Cantor has pointed out that any one familiar with the truth of this

proposition could not have failed to observe that, as the numbers were
auecessively formed, the value of d,,2/a,,_ would approach more and more
nearly to 2, and consequently the successive fractions d_/a, would give
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nearerand nearerapproximationstothevalueof_/2,orinotherwordsthat
1 3 7 17 41
1' 2' 5' 12' 29 .......

are successive approximations to vr2. It is to be observed that the third

of these approximations, 7_, is the Pythagorean approximation which

appears to be hinted at by Plato, while the above scheme of Theon,
amounting to a method of finding all the solutions in positive integers of
the indeterminate equation

2x2-y2= +__1,
and g_venin a work designedlyintroductoryto the studyof Plato,

distinctlysuggests,asTanneryhas pointedout,the probabilitythateven
in Plato'slifetimethesystematicinve_igationofthe saidequationhad
alreadybegun inthe Academy. In thlsconncxionProclus'commentary

on Eucl.I.47 is interesting.It isthereexplainedthat in isosceles
right-angledtriangles"itisnotpossibletofindnumbers correspondingto

the sldes;for thereisno squarenumber which isdoubleofa square
exceptinthesenseofapproximatel2/double,e.g.7sindoubleof 5sIcssI."
When itisrememberedthatTheon'sprocesshasforitsobjectthe finding

ofany number ofsquaresdiflbringonlyby unityfrom doublethesquares

ofanotherseriesofnumbersrespectively,and thatthe sidesofthe two

sets of squares are called diago_aD and Mde-numbers respectively, the
conclusion becomes almost irresistible that Plato had such a system in
mind when he spoke of _r_ _frpo, (rational diagonal) as compared
with _pp_lros $_a_vp_a_ (irrational diagonal) r_, _re_ed_o¢ (cf. p. lxxviii above).

One supposition then is that, following a similar line to that by which

successive approximations to _/2 could be obtained from the successive
solutions, in rational numbers, of the indeterminate equations 2x s -y_= +_1,
Archimedes set himself the task of finding all the solutions, in rational
numbers, of the two indeterminate equations bearing a similar relation

to 43, vlz.
x _- 3y_= 1,
xS-ays= -2.

Zeuthenappearstohavebeen the firsttoconnect,eonomine,theancient

approximationsto_/3withthesolutionoftheseequations,whicharealso

made by Tannerythe basisof hisfirstmethod. But,insubstance,the
same method had been used as earlyas 1723 by De Lagny,whose

hypothesiswillbe,forpurposesofcomi_rison,describedafterTannery's
which itsoexactlyanticipated.

Zeuthen'8_o/u_/on.

Afterrecallingthe factthat,even beforeEuclid'stime,the solution

oftheindeterminateequationx:q-yS=z_by means ofthesubstitutions
r_ -- n2 m 2-].n2

x=ran, Y'= - ' -E-" z= - -E--
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was well known, Zeuthen concludes that there could have been no

difficulty in deducing from Eucl. 1I. 5 the Identity

from which, by multiplying up, it was easy to obtain the formula

3 (2ran) 2+ (m _- 3n2) 2= (m 2+ 3n2) 2.

If therefore one solution m s - 3_t2= 1 was know]l, a second could at once
be found by putting

x=m2_3n 2, y=2mn.

Now obviously the equation

m 2- 3n2= 1

as satisfied by the values m=2, n=l; hence the next solution of the

equation

is xx=22+3.1 =7 , ff1='2.2. I_4 ;

and, proceeding in like manner, we have any number of solutions as

x2=72+3.43=97, y2=2.7.4=56,

x3=97'+ 3.56_= 18817, y3= 2.97.56= 10864,
and so on.

Next, addmsmng himself to the other equation

._ - 3_/2= - 2,
Zeuthen uses the identity

('f/_"t-3_) 2-- 3 (m -I-n) 2= -- 9-(_¢2_ 3_2).

Thus, ff we know one solution of the equation m 2- 3n_= 1, we can proceed
to substitute

x----m+3n, y=m+n.

SuPi_se m='2, n=l, as before ; we then have

.V1_5 , ya=3.

If we put x2=xl+3yl-----14, y._=xl+yl=8, we obtMn

x 2 14 7
Y2 8 4

(and m--7, n=4 is seen to be a solution of m2-3n2=l).

Starting agaan from x2, y_, we have

x a = 38_ Ya= 22,

and x s = __19
Y3 11

(m=19, n=ll being a solution of the equation m2-3n2=- 2);

x4=104 , 2/4-=60,

whenoe x 4 = 2__66
Y4 15



xciv INTRODUCTION.

(and m--26, n=15 satisfies m2-3n2=l),

x 6= 284, Y5= 164,

x_ 71
or _5 -'_'_ "

x 6 97 x 7 265
Similarly _ = _-6, _ = 153' and so on.

This method gives all the successive approximations-to _/._, taking
account as it does of both the equation s

x_--3y2=l,

x2- 3y2= - 2.

Tanners first solution.

Tannery asks himself the question how Diophantus would have set
about solving thc two indeterminate equations. He takes the first equation
in the generalised form

x_--ay2= 1,

and then, assuming one solution (_p, q) of the equation to be known, he
supposes

pl=mx-p, ql=x+q.

Then Tl _- aql2-- m2x_- 2mpx +_ -- ax _-- 2aqx - aq_= 1,

whence, since p2 -- aq2----1,by hypothesis,

x-2 mp_.+_
-- , m2_a

(m2+ a) p + "2am([ 2mp+(m2+a) q
so that 2_1= m s - a , _1---- m 2 -- a '

and pl _- aql_= 1.
The values of Pl, 91so found are rational but not necessarily integral ;

if integral solutions are wanted, we have only to put

Pl = (ug+ av2)P + _auv_, ql = 2Tuv + (us+ av_) 9,

where (u, v) is another integral solution of x 2- aye= 1.
Generally, if (p, q) be a known solution of the equation

x_- aye=r,

supposepl=ap+/_l, qff=yp+Sq, and "fl sultlt pour ddterminer a, _, y, 8 de
connaltre les trois groupes de solutions les plus simples et de rdsoudre
deux couples d'6tuations du premier degr_ k deux ineonnue_" Thus
(1) for the equation

x_- 3y2= 1,
the first three solutions are

(p=l,q=0), (p=2,_=l), (T=7, q=4),

7--_+_[2=a and 4=2_+8)'whence l = 7

so that a=2, f_=3, 7=I, _=2,
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and it follows that the fourth solution is given by

p=2.7+3.4=26,

q=1.7+2.4=15 ;

(2) for the equation x2-3y:= - 2,

the first three solutions being (1, 1), (5, 3), (19, 11), we have

5=a+fl_ and 19=5a+3fl_
3=_+_) 11=_+3_)'

whence a=2, fl=3, 7--I, _=% and the next solution is given by

p---2.19+3. II =71,

q--1.19+2.11=41,
and so on.

Therefore, by using the two indeterminate equations and proceeding as

shown, all the successive approximations to _t3 can be fom_d.

Of the two methods of deahng with the equations it will be seen that

Tannery's has the advantage, as compared with Zeuthen's, that it can be

applied to the solution of any equation of the form x2-ay_ffir.

De Zarjny's method.

The argument is this. If _/5 could be exactly expressed by an im-

proper fraction, that fraction would fall between 1 and 2, and the square of

its numerator would be three times the square of its denominator. Since

this is impossible, two numbers have to be sought such that the square of

the greater differs as httle a._ possible from 3 times the square of the

smaller, though it may be either greater or le_s. De Lagny then evolved

the following successive relations,

22=3.12+1, 5_=3.32- 2, 72=3.4_+1, 192----3.11 _- 2,

26_=3. 152+|, 712=3.41'_-2, etc.

From these relations were derived a series of fractions gre_ter than _/3,

viz. 2 7 26
1' 4' 15' etc., and another series of fractions loss than _/3, viz.

5 19 71

, _, _, etc. The law of formation was found in each case to be that, if

p'

P- was one fraction in the series and _ the next, thenq

p'_ 2p+3q

This led to the results

2 7 26 97 362 1351

1>4>i-5>_>209 > 780 "">_/3'

5 19 71 265 989 3691

and 3"_ _< 41 < 153 < 5_71<2-_1 "'"_43;
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while the law of formation of the successive approximations in each series

is precisely that obtained by Tannery as the result of treating the two
indeterminate equations by the Diophantine method.

]Ieilermann's method.

This method needs to be mentioned because it also depends upon a

generahsation of the system of s/de- and diagoncd.numbers given by Theon
of Sm)-cna.

Theon:s rule of formation was

SA=S_-I+D.-:, /).= 2S.-I+D.-I;

and Heilermann simply substltutes for 2 in the second relation any

arbitrary number a, developing the following scheme,

Sl =So+D0, D, = a_go+ Do,

S2-=,gI+D 1, D2=aSITDI,

s3=&+D2, V_=.S2+D2,

_q.=S._l +D._I, ])n--- aS._1 +D._p
It follows that

aS, 2= aS,,_1 'z+ 2aS,_ 1D,r_ I + aD_ .l 2,

D_2 = asS-- 13-_"2aS,-1D, - 1+ D,-1 "z.

By subtraction, ]92 _ aS2 = (1 - a) (D,_I z - aS__l 2)

=(1 - a) 2 (D=_,iz- aS,__2), similarly,

= (1 - a)" (Do 2- aS02 ).

This corresponds to the most general form of the "Pellian" equation

_a - ay 2-- (const.).

If now we put Do=,_o=l, we have

D,__ -a) " �÷\	�¼=a+(1 N2 '

from which it appears that_ where the fraction on the right-hand side

D.

approaches zero as n increa_s, _ is an approximate value for Ja.

Clearly in the case where a= 3, Do= 2, So= 1 we have

Z)o 2 D 1 5 D z 14 7 D a 19 /)4 52 26

_0=_, _,=_, _=-g=_, _=_, _,=3o=_,
D s 71 D e 194 97 D 7 265

_=_, _.=i_=5_ ' g=_a'
and so on.
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But the method is,as shown by Heilermann, more.rapidifitisused to

find,not ,_/a,but b_/a,where b is so chosen as to make b2a (whichtakes

the place of a) somewhat near to unity. Thus suppose 27
a = _o' so that

- 3

_/a= _q_, and we then have (puttingD o= So= I)

5"2 .- 5 26 26

Sl="2 , Dz---:_o, and _/3co:_."2_, or 15'

S. 102 54+52 106 and _/;3_ 5 106 265
"-'= 2-,5 ' Do-- 25 .25 ' 3" 102' or 153'

S 208 10"2. "27 106 5404
3= 25 ' D3= _ "t "25 "25.25'

and _/,_¢_ 5404 5 1,_51
"25_208" 3' or 780 "

This is one of the very few instances of success in bringing out the two

Archimedean approximations in immediate sequence without any foreign

values intervening. No other methods appear to connect the two values

in this direct way except those of Huurath and Hultsch depending on the
formula

a+_ > 4a_+_[,> a b+--2a+l"

We now pass to the second class of solutions winch develops the

approximations in the form of the stun of a series of fraction_, and under
this head comes

Ta_nery's second met/wd.

This may be exhibited by means of it_ apl)li_tion (1) to the case of the

square root of a l_rge numt_r, e.g. _/_ or _/571-'+"23409, the first of

the kind aplmaring in Archimedes, (.2) to the case of _/3.

(1) Using the formula
7

4_+_ _+ _,

we try the effect of putting for _/5_- �2340§the expressmn

23409
571 + --

114"2 "

It turns out that this gives correctly the integral part of the root, and we

now suppose the root to he
1

57 l + ,20 + -.
m

1 as negligible, we haveSquaring and regarding &-i

5712+400+22840+ 1142 + 40-- 571_+.23409,

H._,. g
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wheuce 1182 = 169,m

1 169 1

and m = i_ > 7'

that _/34-.9-4-50> 591 _.
SO

(2) Beanng in mind that

_,/a _-b b
e,a a + 2a_ i '

2

we have _/3=_/_+2 _ 1 +2. $]1

5

oJl+ 2, or g.

A_s,maing then that _3 (_+1)= m ' squaring and neglecting _, we obtain

+ 10_=3,

whence m= 15, and we get a.s the .second approximation

5 1 26
5+_, or i?;"

We have now 26_- 3.15-°= 1,

and can proceed to find other approximations by means of Tannery's first
method.

2 1

Or also put ,(1 +-__+ _o 1 2we co.n + _] = 3_

and, neglecting 1_ we get

262 52

i_ + _._ = 3,

whence n = - 15.52 = - 780, and

( 2 1 1 13 1"43_ 1+_+---_o= 7so/15

1351

It is however to be observed that this method only connects 780 with

26 and not with the intermediate approximation 2651--5 153_ to obtain which

Tannery implicitly uses a particular case of the formula of Hunrath and
Hultsch.

Rodef_ method was apparently invented to explain the approximation

in the _ulv_ltr_*

* See Cantor, Vorlesunoen _iber Gesch. d. Math. p. 600 sq.
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but, given the approximation 4, the other two suceesmve approximations

indicated by the formula can be obtained by the method of squ_rmg just
described m without such elaborate work as that of Rodet, which, when

applied to vr3, only gives the same results as the simpler method.

Lastly, with reference to the third cla._s of solutions, it may be
mentioned

(1) that Oppermann used the formula

a +b £_ab

2 >_/ab >h%b'
2 - 3

which gave succe_slvely _ > _/3 > _,

7 19.

_>_/5>-$,

.q7 _/_> I6S
5"6> 97 '

but only led to one of the _4_rchimedean approximations, and that by

combining the last two ratios, thus

97+168 265

56+97 =_-3'

('2) that Sch_inborn came somewhat near to the formula successfiflly used

by Htmrath and Hultsch when he proved¢ that

+ b _/a2+b>a b
a__-_ > ± '2a + _/b "

Cantor had already pointed this out in his first edition of 1880.

"_Zeitschrift fiir Math. u. Physik (Hut. litt. Abthe,lung) xxvIiL (1883),
p. 169 sq.

g2



CHAPTER V.

ON THE PROBLEMS KNOWN AS NET2EIX.

THF. word v_,_, commonly incllnatio in Latin, is difficult to
tranRlate satisfactorily, but its meaning will be gathered from some
general remarks by Pappus having reference to the two Books of
Apollonius entitled v¢_or{t_(now lost). Pappus says*, "A line is
said to verge (v_ttv) towards a point if, being produced, it reach the
point," and he gives, among particular cases of the general form of
the problem, the following.

"Two lines being given in position, to place between them a
straight line given in length and verging towards a given point."

"If there be given in position (1) a semicircle and a straight
line at right angles to the base, or (2) two semicircles with their
bases in a straight line, to place between the two lines a straight
line given in length and verging towards a comer (),_v&v) of a
semicircle."

Thus a straight line has to be laid acro_ two lines or curves so
that it passes through a given point and the intercept on it between
the lines or curves is equal to a given length+.

§ 1. The following allusions to particular vfgaEts are found in
Archimedes. The proofs of Props. 5, 6, 7 of the book On Spirals

use respectively three particular cases of the general theorem that,

* Pappus (ecZHultsoh)wt. p. 670.
t In the German translation of Zeuthen's work, Die Lehre van den

KeBelsshnittenim Altermm, r_trt_ is translatedby "Einschiebung," or as we
might say _'insertion,"but this fails to expressthe conditionthat therequired
llne must passthrougha given point,just as inclinatio(andforthat matterthe
Oa-eekterm itself) fails to expreesthe otherrequirementthat the intercepton
the line must be of givenlength.
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if A be any poi_t on a circle and BC any diameter, it is p(Jasible to
draw through A a straight line, meeting the circle again in P and

BC p_vduced in R, such that the interceTt PR is equal to any given

A

L

B I "'.. ",, r

length. In each particular ease the fact is merely stated as true
without any explanation or proof, and

(]) Prop. 5 assumes the case where the tangent at A is parallel
to 130,

(2) Prop. 6 the case where the points A, P in the figure are
interchanged,

(3) Prop. 7 the case where A, P are in the relative positions

shown in the figure.

Again, (4) Props. 8 and 9 each assume (as before, without proof,

and without giving any solution of the
implied problem) that, if AE, BC be two

clmrds of a circle intersecting at ri&ht _.c
angles in a point D such that .BD > DC, \
then it is possible to draw through A

anotI, er line ARP, meeting I3C in R a_d
the circle again in P, s_ch that PR = DE.

Lastly, with the assumptions in Props.
5, 6, 7 should be compared Prop. 8 of the

A_umptorum, which may well be
due to Axchlmedes, whate_er may be said of the composition of the

whole book. This proposition proves that, if in the first figure

APR is so draum that PR is equal to the radius OP, then the arc
AB is three times the arc PC. In other words, if an arc AB of a

circle be taken subtending any angle at the centre O, an arc equal

to one-third of the given arc can be found, i.e. the give_z angle can be
triaee2_ _f ovdy APR can be drawn through A in _.ch a manner
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that the intercept PR between the circle and JBO produced is equal to

the radius of the circle. Thus the trisection of an angle is reduced to

a v_atv exactly similar to those assumed as possible in Props. 6, 7
of the book On Splrals.

The ve_cr_ so referred to by Archimedes are not, in general,

capable of solution by means of the straight line and circle alone,
as may be ea.uily shown. Suppose in the first figure that ._

represents the unknown length OR, where 0 is the middle point

of _C, and that k is the given length to which I'R is to be equal ;
also let OD -- a, AD = b, BC = 2c. Then, whettmr RC be a diameter

or (more generally) any chord of the circle, we have

AR. RP = BR. RC,

and therefore k _t_ + (x - a) 2= x 2- c:.

The resulting equation, after rationalisation, is an equation of the
fourth degree in x; or, if we denote the length of AR by y, we have,

for the determination of x and y, the two equations

y:= (x- a)"+b' t (-).ky = _Y- c_ S..........................

In other words, if we have a rectangular system of coordinate

axes, the values of x and y satisfying the conditions of the problem
can be determined as the coordinates of the points of intersection of

a certain rectangular hyperbola and a certain parabola.

In one particular case, that namely in which .D coincides with 0

the middle point of BC, or in which A is one extremity of the

diame_r bisecting BC at right ang|es, a= 0,. and the equations

reduce to the single equation

:-ky=b'+:,
which is a quadratic and can be geometrically solved by the

traditional method of application of areas ; for, if u be substituted
for y- k, so that u = AP, the equation becomes

u (]_+ u) =b' + :,

and we have simply "to apply to a straight *iine of length k a

rectangle exceeding by a square figure and equal to a given
area (b_+ c2)."

The other u_v referred to in Props. 8 and 9 can be solved in

the more general form where k, the given length to which PR
is to be equal, has any value within a certain maximum and is not
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necessarily equal to DE, in exactly the same manner; and the two

equations corresponding to (a) will be for the second figure
y' (a- _)'+b"i (_).ku=c'--_ f ........................

Here, again, the problem can be solved by the ordinary method
of application of areas in the particular case where AE is the

diameter bisecting BC at right angles; and it is interesting to note

that this particular ease appears to be assumed in a fragment

of Hippocrates' Quadrature of lunes preserved in a quotation
by Simplicius _ from Eudemus' History of Geometry, while Hippo-

crates flourished probably as early as 450 B.c.
Accordingly we find that Pappus distinguishes different classes

of vH_E_ corresponding to his classification of geometrical problems
in general. According to him, the Greeks distinguished three kinds

of problems, some being plane, others solid, and others linear. He

proceeds thust : "Those which can be solved by means of a straight
line and a circumference of a circle may properly be called p/ane

(_r./Trf3a); for the lines by means of which such problems are

solved have their origin in a plane. Those however which are
solved by using for their discovery (E3pc_Lv) one or more of the
sections of the cone have been called solid (o-tEpid); for the

construction requires the use of surfaces of solid figures, namely,
those of cones. There remains a third kind of problem, tha_

which is called linear (ypa/_,_gv); for other lines [curves] besides
those mentioned are assumed for the construction whose origin

is more complicated and less natural, as they are generated from

more irregular surfaces and intricate movements." Among other
instances of the linear class of curves Pappus mentions spirals, the

curves known as quadratrices, conchoids and cissoids. He adds

that "it seems to l)e a grave error which geometers fall into

whenever any one discovers the solution of a plane problem by
means of conies or linear curves, or generally solves it by means of

a foreign kind, as is the ease, for example, (1) with the problem in
the fifth Book of the Conies of Apollonius relating to the parabola+,

Simplicius, Comment. in Aristot. Phys. pp. 61--458(ed. Diols). The whole
quotation is reprodueed by Bretschneider, D_e Geometrie und die Geometer vor
F.ukhdes, pp. 109--121. As regards the assumed construction see particularly
p. 64 and p. xxiv of Diels' edition; cf. Bretschneider, pp. 114, 115,and Zeuthen,
Die Lehre van den Kegelsehnitten _m Altertum, pp. 269, 270.

+ Pappus iv. pp. 270--272.
**Cf. Apolhmzus of Perga, pp. cxxvili, cxxix.
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and (2) when Archimedes assumes in his work on the spiral a
vt_rt_ of a solid character with reference to a circle; for it is

possible without calling in the aid of anything solid to find the

[proof of the] theorem given by the latter [Archimedes], chat is, to
prove that the circumference of the circle arrived at in the first

revolution is equal to the straight line drawn at right angles to the

initial line to meet the tangent to the spiral."
The "solid vt_rt_" referred to in this passage is that assumed to

be possible in Props. 8 and 9 of the book On Spirals, and is mentioned
again by Pappns in another place where he shows how to solve the

problem by means of conics I. This solution will be. given later, but,

when Pappus objects to the procedure of Archimedes as unorthodox,

the objection appears strained if we consider what precisely it is that
Archimedes assumes. It is not the actual solution which is assumed,

but only its possibility; and its possibility can be perceived without

any use of conies. For in the particular case. it is only necessary,

as a condition of po_ibility, that DE in the second figure above
should not be the maz'imum length which the intercept PR could

ht_ve as `4PJ_ revolves about .4 from the position AD_' in the
direction of the ceatre of the circle; and that 1)E is not the

maximum length which PR can have is almost self-evident. In

fact, if P, instead of moving along the circle, moved along the

straight line through E parallel to _C, and if ARP moved from the

position ADE in the direction of the centre, the length of PR would
continually increase, and afortiori, so long as/' is on the arc of the

circle cut off by the parallel through E to BC, P.R must be greater

in length than DE; and on the other hand, as ARP moves further
in the direction of B, it must sometime intercept a length PR

equal to DE before P reaches /_, when PR vanishes. Since, then,

Archimedes' method merely depends upon the theoretical possibility
of a solution of the vE;_t_, and this possibility could be inferred

from quite elementary considerations, he had no occasion to use

conic sections for the purpose immediately in view, and he cannot

fairly be said to have solved a plane problem by the use of conics.
At the same time we may safely assume that Archimedes

was in possession of a solution of the ve;at¢ referred to. But there

is no evidence to show how he solved it, whether by means of conics,
or otherwise. That he would have been able to effect the solution,

* Pappus Iv. p. 298 sq.
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as Pappus does, by the use of conics cannot be doub_d. A precedent
for the introduction of conics where a "solid problem" had to be

solved was at hand in the determination of two mean proportionals

between two unequal straight lines by Menaechmus, the inventor uf
the conic sections, who used for the purpose the intersections of a

parabola and a rectangular hyperbola. The solution of the cubic

equation on which the proposition On t/re Sphere and Cyli,_der IL 4
depends is also effected by means of the inr, ersections of a parabola

with a rectangular hyperbola in the fragment given by Eutocius
and by him assumed to be the work of Archimedes himself*.

Whenever a problem did not admit of solution by means of the

straight line and circle, its solution, where poasible, by means of
conics was of the greatest theoretical importance. First, the

possibility of such a solution enabled the problem to be classified

as a "solid problem "; hence the importance attached by Pappus

to solution by means of conics. But, secondly, the method had
other great advantages, particularly in view of the requirement that

the solution of a problem should be accompanied by a 8top_a/_gr

_ving the criterion for the possibility of a real solution. Often too

the _tOpto'_¢_ involved (as frequently in Apollonius) the determination
of the number of solutions as well as the limits for their possibility.

Thus, in any case where the solution of a problem depended on the

intersections of two conics, the theory of conics afforded an effective

means of investigating t_toptcrl.to_.

§ 2. But though tile solution of "_lid problems" by means of

conics had such advantages, it was not the only method open to
Archimedes. An alternative would be the use of some mechanical

construction such as was often used by tile Greek geometers and is

recognised by Pappus him_lf as a legitimate substitute for conics,

which are not easy to draw in a planeT. Thus in Apollonius'

solution of the problem of the two mean proportionals as given by
Eutocius a ruler is supposed to be moved about a point until the

points at which the ruler crosses two given straight lines at right

angles are equidistant from a certain other fixed point; and the
same construction is also given under l=[eron'_ name. Another

version of Apollonius' solution is that given by Ioannes Philoponu_

which assumes that, given a circle with diameter OC and two

* See note to On the Sphere and Cyltnder, xx.4.
_rPappus m. p. 54.
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straight lines OD, OE through 0 and at right angles to one

another, a line can be drawn through C, meeting the circle again
in F and the two lines in D, E respectively, such that the in-

tercepts CD, FE are equal. This solution was no doubt discovered

by means of the intersection of the circle with a rectangular hyper-

bola drawn with OD, OE as asymptotes and passing through C ;
and this supposition accords with Pappus' statement that Apollonius
solved the problem by means of the sections of the cone o. The

equivalent mechanical construction is gi_,en by Eutocius as that
of Philo Byzantinus, who turns a ruler about C until CD, FE are
equal t.

Now clearly a similar method could be used for the purpose of

effecting a v_rt_. We have only to suppose a ruler (or any object

with a straight edge) with two marks made on it at a distance

equal to the Even length which the problem requires to be

intercepted between two curves by a line passing through the
fixed point ; then, if the ruler be so moved that it always passes

through the fixed point, while one of the marked points on it follows

tim course of one of the curves, it is only necessary to move the
ruler until the second marked point falls on the other curve. Some

such operation as this may have led Nicomedes to the discovery of

his curve, the conchoid, which he introduced (according to Pappus)

into his doubling of the cube, ;_nd by which he also trisected an

angle (according to the same authority). From the fact that
Nicomedes is _id to have spoken disrespectfully of Eratosthenes'

mechanical solution of the duplication problem, and therefore must
have lived later than Eratosthenes, it is concluded that his date

must have been subsequent to 200 B.c., while on the other hand
he must have written earlier than 70 s.c., since Geminus knew the

name of the curve about that date; Tannery places him between

Archimedes and Apollonius,*. While therefore there appears to
be no evidence of the use, before the time of Nicomedes, of such

a mechanical method of solving a vE_t_, the interval between

Archimedes and the discovery of the conchoid can hardly have
been very long. As a matter of fact, the conchoid of Nicomedes

can be used to solve not only all the l,E_rc_gmentioned in Archimedes

but any case of such a problem where one of the curves is a straight

* Psppus itl. p. 56.
+ For fuller details see Apollonius of Perga, pp. cxxv--cxxvii.

Bulletin des $cience_ Math_f_matiques,2• s_rie V_Lp. 284.
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line. Both Pappus and Eutocius attribute to l_icomedes the inven-
tion of a machine for drawing his conehoid. AB i_ supposed to be

'x t ",

a ruler with a slot in it parallel to its length, FE a second ruler at
right angles to the first with a fixed peg in it, 6'. This peg moves

in a slot made in a third ruler parallel to its length, while this
ruler has a fixed peg on it, 1), in a straight line with the slot in

which C moves ; and the peg D can move along the slot in AB. If

then the ruler PD moves so that the peg 2) describes the length of

the slot in AB on each side of F, the extremity of the _ler, 1J,
describes the curve which is called a eonchoid. Nieomedes called

the straight line AB the ruler (_avdv), the fixed point C the pole

(_r_ko_), and the length PD the distance (_L&rr_La); and the
fundamental property of the curve, which in polar coordinates

would now be denoted by the equation r=a�b sec _, is that, if

any radius vector be. drawn from C to the curve, as CP, the length
intercepted on the radius vector between the curve and the straight

line AB is constant. Thus any vo_r_ in which one of the two

given lines is a straight line can be solved by means of the
intersection of the other line with a certain conchoid whose pole

is the fixed point to which the required straight line must verge

(vE_c_v). In practice Pappus tells us that the couchoid was not

always actually drown, but that "some," for greater convenience,
moved the ruler about the fixed point until by trial the intercept

was made equal to the given length%

§ 3. The following is the way in which Pappus applies
conic sections to the solution of the v_L_ referred to in Props. 8, 9

of the book On Spirals. He begins with two lemmas.

• Pappus iv. p. 246.
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(l) If from a given point A any straight line be drawn meeting
a straight line BC given in position in R, and if RQ be drawn

perpendicular to _C and bearing a given ratio to A/_, the locus of
Q is a hyperbola.

s c

Pt K/

I

For draw AD perpendicular to BC, and on A D produced take A'
such that

QR : RA = A'D : DA = (tile given ratio).

Measure DA" along DA equal to DA'.

Then, if QN be perpendicular to AN,

(AR- AD ): (QR'- =(eonst.),
or Q2V' : A'N. A"_V : (const.)

(2) If BC be _ven in length, and if RQ, a straight line drawn
at right angles to BC from any point R on it, be such that

hR. RC = _. l_q,

where k is a straight line of given length, then the locus of Q is a
parabola.

Let O be the middle point of J_C, and let OK be drawn at right
angles to it and of such length that

OC _= k . KO.

Draw Qff' perpendicular to OK.

Then Q.V'_= OR _ - OC _- BR . RC

= k. (KO - RQ), by hypothesis,

= k. KN'.
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In the particular case referred to by Archimedes (with the slight

generalisation that the given length k to which PR is to be equal is
not necessarily equal to DE) we have

(1) the given ratio RQ : AR is unity, or RQ = AR, whence A"
coincides with A, and, by the first lemma,

QIV2= AIV. ,t'_,

so that Q lies on a rectangular hyperbola.

(2) I_R. RC=AR. RP=k. AR-k. RQ, and, by the second
lemma, Q lies on a certain parabola.

If now we take O as origin, OC as axis of .c and OK as axis of y,

and if we put OD = a, AD = b, I3C = 2c, the hyperbola and parabola

determining the position of (2 are respectively denoted by the
equations

(. - x)2= y:_ b_,
c_- x 2- ky,

which correspond exactly to the equations (fl) above obtained by

purely algebraical methods.

Pappus says nothing of the _LOptO*_g which is necessary to the

complete solution of the generalised problem, the 3_opur_ namely
which determines the rnax/_ value of k for which the solution iq

possible. This maximum value would of course correspond to the

case in which the rectangular hyperbola and the parabola touch one
another. Zeuthen has shown _ that the corresponding value of k can

be determined by means of the intersection of two other hyperbolaa or

of a hyperbola and a parabola, and there is no doubt that Apollonius,

with his knowledge of conics, and in accordance with his avowed
object in giving the properties useful and necessary for 3mp_r_o5
would have been able to work out this particular &opw'tM_ by means
of conias; but there is no evidence to show that Archimedes investi-

gated it by the aid of conics, or indeed at all, it being clear, as shown
above, that it was not necessary for his immediate purpose.

This chapter may fitly conclude with a description of (1) some

important applications of ve_raL_ given by Pappus, and (2) certain

particular eases of the same class of problems which are plane, that
is, can be solved by the aid of the straight line and circle only, and

which were (according to Pappus) shown by the Greek geometers to
be of that character.

'* Zeuthen, Die Lehre yon den Kegelschnitteu im Altertunt, pp. 273----5.
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§ 4. One of the two important applications of 'solid' v_o'_s: wa_
discovered by Nic_)medes, the inventor of the conchoid, who intro-

duced that cum.e for solving a vo_rt_ to which he reduced the problem

of doubling the cube* or (what amounts to the same thing) thefinding
of two mean p_roTortionals between two given unequal straight lines.

Let the given unequal straight lines be placed at right angles as

CZ, LA. Complete the parallelogram ABCL, and bisect AB at D,
and _C at E. Join LD and produce it to meet C/_ produced in H.

From E draw EF at right angles to BC, and take a point F on £F

such that CF is equal to AD. Join HF, and through C draw CG

parallel to H_: If we produce BC to K, the straight lines CG, CK

M

_ E tc

F

form an angle, and we now draw from the given point F a straight

line FGK, meeting CG, CK in G, K respectively, such that the

intercept GK is equal to A_9 or FC. (This is the v_t_ to which

the problem is reduced, and it can be solved by means of a conchoid

with F as pole.)
Join KL and produce it to meet ]]A produced in M.

Then shall CK, AM be the required mean proportionals between

CL, LA, or
CL : CK=CA': AM=AM: AL.

We have, by Eucl. n. 6,
BK . KC + CE _= EK'.

If we add EF _ to each side,
BK . KC + CF ! = FK s.

Now, by parallels,
MA : AB= ML : LK

= 1_0 : CA';

Pappus rv. p. 242 sq. and nL p. 58 sq. ; Eutocius on Archimedes, On the
Sphere and Cylinder, xx. I (_'ol. m. p. 114 sq.)
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and, since AB = 2AD, and BC = {HC,

MA : AD=IIC : CK

= FG : G/(, by parallels,
whence, componendo,

MD : AD = FK : GK.

But GK = AD ; therefore MD = FK, and MD _= FK 2.

Again, 311)" = .SM. MA + AD',

and FK' = BK . A'C + CF _, from above,

while 3[D _= FK*, and AD _- CF_ ;
therefore BM. MA = JBK. KC.

Hence CK : MA = BM : BK

= MA : AL_
LC : CK J ' by parallels,

that is, LC : CK=CK : MA = MA : AL.

§ 5. The second important problem which can be reduced to
a ' solid' v(9_e_ is the trisection of any a_le. One method of

reducing it to a v[;aL_ has been mentioned above as following from

Prop. 8 of the Liber Assump_orum. This method is not mentioned

by Pat)pus , who describes (Iv. p. 272 sq.) another way of effecting
the reduction, introducing it with the words, "The e_rlier

geometers, when they sought to solve the aforesaid problem about

the [trisection of the] angle, a problem by nature 'solid,' by

'plane' methods, were unable to discover the solution; for they
were not yet accustomed to the use of the sections of the cone,
and were for that reason at a loss. I_er, however, they trisected

an angle by means of conics, having used for the discovery of it
the following vEga_."

The ve_L_ is thus enunciated : Given a rectangle AJ_CD, let it

be required to draw through A a straight line A QR, meeting CD in

Q and BC produced in R, such that the intercept QR is equal to a

given length, k suppose.

Suppose the problem solved, QR being equal to k. Draw DP
parallel to QR and/7P parallel to CD, meeting in P. Then, in the

parallelogram DR, DP = QR = k.
Hence P lies on a circle with centre D and radius k.

Again, by Euel. L 43 relating to the complements of the

parallelograms about the diagonal of the complete parallelogram,
BC. CD =Bt_. OD

= PR. RB;
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and, since BC. CD is given, it follows that P lies on a rectaz.jular

hyperbola with BR, BA as asymptotes and passing through D.

B ¢ R

Therefore, to effect the construction, we have only to draw this
rectangular hyperbola and the circle wittl centre D and radius equal

to k. The intersection of the two curves gives the point P, and R
is determined by drawing PR parallel to DC. Thus A QR is found.

[Though Pappus makes AtlCD a rectangle, the construction

applies equally if ABCD is any parallelogram.]
Now suppose ABC to be any acute angle which it is required to

trisect. Let AC be perpendicular to BC. Complete the parallelo-

gram ADBC, and produce DA.

Suppose the problem solved, and let the angle CBE be one-third
of the angle ABC. Let JBE meet AC in E and DA produced in F.

Bisect EF in H, and join All.

Then, since the angle AIIE is equal to twice the angle EBC and,

by parallels, the angles EBC, EFA are equal,

: ABE = 2 _ AFH = ,_A HB.

Therefore AB = AH = HF,

and EF = 2HF

= 2AB.

D A F

B G

Hence, in order to trisect the angle ABC, we have only to solve
the following ve_rtq: Given the rectangle ADBC whose diagonal
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is AB, to draw through B a straight line BEF, meeting A6' in E and
DA produced in F, such that EF may be eq_al to twiv.e AB ; and this
u_ is solved in the manner just shown.

These methods of doubling the cube and trisecting any acute
angle are seen to depend upon the application of one and the same

wga_, which may be stated in its most general form thus. Given

any two straiitht lines forming an angle and any fixed point

which is not on eit]_r line, it is required to draw through the
fixed point a straight line such that the portion of it intercepted
between t}_ .fixed lines is equal to a given length. If AE, AC be

/

D A///// R E

B C

the fixed lines and B the fixed point, let the parallelogram ACBD

be completed, and suppose that I_QR, meeting CA in 0 and AE in

__, satisfies the conditions of the problem, so that OR is equal to

the _ven length. If then the parallelogram CQRP is completed,
we may regard P as an auxiliary point to be determined in order
that the problem may be solved ; and we have seen that P can be

found as one of the points of intersection of (1) a circle with centre
C and radius equal to k, the given length, and (2) the hyperbola

which passes through C and has DE, DIJ for its asymptotes.
It remains only to consider some particular cases of the problem

which do not require conics for their solution, but are 'plane'

problems requiring only the use of the straight line and circle.

§ 6. We know from Pappus that Apollonius occupied him-
self, in his two Books of _, with problems of that type

which were capable of solution by 'p/ane' methods. As a matter

of fact, the above voSaL_ reduces to a 'plane' problem in the
particular case where B lies on one of the bisectors of the angle

between the two given straight lines, or (in other words) where the
parallelogram A CBD is a rhombus or a square. Accordingly we

find Pappus enunciating, as one of the 'plane' cases which had

H.A. h
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been Ringled out for proof on account of their greater utility for
many purposes, the following*: Given a rhombus with one side

produced, to fit into the exterior angle a straight line given in

length and verging to the opposite angle ; and he gives later on, in

his lemmas to Apollonius' work, a theorem bearing on the problem
with regard to the rhombus, and (after a preliminary lemma)

a solution of the vc_ with reference to a square.

The question therefore arises, how did the Greek geometers
discover these and other particular cases, where a problem which

is in general ' solid,' and therefore requires tile use of conics (or a
mechanical equivalent), becomes 'plane'? Zeuthen is of opinion that

they were probably discovered as the result of a study of the general
solution by means of conicst. I do not feel convinced of this, for
the following reasons.

(1) The authenticated instances appear to be very rare in
which we should be justified in assuming that the Greeks used

the properties of conics, in the same way as we should combine

and transform two Cartesian equations of the second degree, for
the purpose of proving that the intersections of two conics also

lie on certain circles or straight lines. It is true that we may
reasonably infer that Apollonius discovered by a method of this sort

his solution of the problem of doubling the cube where, in place
of the parabola and rectangular hyperbola used by Menaechmus,

he employs the same hyperbola along with the circle which passes

through the points common to the hyperbola and parabola ++; but
in the only propositions contained in his conics which offer an

opportunity for making a similar reduction§, Apollouius does not

make it, and is blamed by Pappus for not doing so. In the pro.

positions referred to the feet of the normals to a parabola drawn
from a given point are determined as the intersections of the

parabola with a certain rectangular hyperbola, and Pappus objects

• Pappus vu. p. 670.
_""Mit dieser selben Aufgabe ist n_flich ein wichtiges Beispiel daitir

verknupft, classman bemfiht war solehe Fiille zu entdecken, in denen Aufgaben,
zu deren Lhsung im allgemeinen Kegels_hn_tte erforderlich sind, sich mittels
Zirkel madLineal 15sen lassen. Da nun alas Studium der aUgemeinen Lhsung
durch Kegelschnitte dae beste Mittel gew_J_rtsolche Fdle zu enklecken, so ist
es ziemlich wahrscheinlieh, dass man wirklich diesen Weg eingeschlagen hat."
Zeuthen, op. eit. p. 280.

$ Apollonius ofPerga, p. exxv, exxvL
§ /b/d. p. cxxviii and pp. 182, 186 (Conics, v. 58, 62
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to this method as an instance of discovering the solution of a

' plane' problem by means of conics _, the objection having reference
to the use of a hyperbola where the same points could be obtained
as the intersections of the parabola with a certain circle. Now the

proof of this latter fact would present no difficulty to Apollonius,
and Pappus must have been aware that it would not; if therefore

he objects in the circumstances to the use of the hyperbola, it is at

least arguable that he would equally have objected had Apollonius
brought in the hyperbola and used its properties for the purpose

of proving the problem to be ' plane' in the particular case.
(2) The solution of the general problem by means of conics

brings in the auxiliary point P and the straight line CP. We
should therefore naturally expect to find some trace of these in the

particular solutions of the vo_at_ for a rhombus and square ; but

they do not appear in the corresponding demonstrations and figures

given by Pappus.

Zeuthen considers that the w6a_s with reference to a square was
probably shown to be 'plane' by means of the same investigation

which showed that the more general case of the rhombus was also

capable of solution with the help of the straight line and circle
only, i.e. by a systematic study of the general solution by means of

conics. This supposition seems to him more probable than the view

that the discovery of the plane construction for the square may have
been accidental ; for (he says) if the same problem is treated solely

by the aid of elementary geometrical expedients, the discovery that

it is 'plane' is by no means a simple mattert. Here, again, I am
not convinced by Zeuthen's argument, as it seems to me that a

simpler explanation is possible of the way in which the Greeks were

led to the discovery that the l_r_icular vd_rct_ were plane. They

knew in the first place, that the trisection of a ri!lh_ angle was a
'plane' problem, and therefore that ]_df a right a_gle could be

trisected by means of the straight line and circle. It followed

* Pappus sv. p. 270. Cf. p. ciii above.
_""Die Ausffihrbarkeit kann dana auf die zuerst angedeuteteWeise gefunden

sein, die den aUgemeinen Fall, wo der Winkel zwisehen den gegebenenGersden
bollebig ist, in sich begreift. Dies scheint mir viel wahrscheinlicher als die
Annahme, dass die Entdeckung dieser ebenen Konstruction zufdllig sein sollte ;
denn wenn man dieselbe Aufgabe nur mittels rein elementar-geometrischer
Htilfsmittel bohandelt, so liegt die Entdeokung, dass sie eben ist, ziemlich fern."
Zeuthen, op. cir. p. 282.

h2 ,
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therefore that the corresponding vrT_t_, i.e. that for a square, was

a 'plane' problem in the particular ease where the given length
to which the required intercept was to be equal was double of

the diagonal of the square. This fact would naturally suggest
the question whether the problem was still plane if k had

any other value; and, when once this question was thoroughly
investigated, the proof that the problem was 'plane,' and the

solution of it, could hardly have evaded for long the pursuit of
geometers so ingenious as the Greeks. This will, I think, be

clear when the solution given by Pappus and reproduced below
is examined. Again, after it had been proved that the vc_t_ with

reference to a square was 'plane,' what more natural than the further
inquiry as to whether the intermediate case between that of the

square and parallelogram, that of the rhombus, might perhaps be a
' plane' problem _.

As regards the actual solution of the plane v_¢t_ with respect

to the rhombus and square, i.e. the cases in general where the fixed

point B lies on one of the bisectors of the angles between the two

given straight lines, Zeuthen says that only in one of the cases have
we a positive statement that the Greeks solved the v_t_ by means

of the circle and ruler, the case, namely, where ACBD is a square t.

This appears to be a misapprehension, for not only does Pappus

mention the case of the rhombus as one of the plane vegaEt¢ which
the Greeks had solved, but it is clear, from a proposition given by

him later, how it was actually solved. The proposition is stated

by Pappus to be "involved" (_rapaS¢_poigcrov, meaning presumably
"the subject of concurrent investigation") in the 8th problem of

Apollonius' first Book of rcger_t_, and is enunciated in the following

form t. Given a rhombus AD with diameter BC produced to E, if EF
be a mean proTortional between .BE, EC, and if a circle be d_scribed

with ccntxe E and radius EI¢" cutting CD in K and A C produced in

tt, .BKH shall be a straight line. The proof is as follows.
Let the circle cut AC in L, and join HE, KE, ZE. Let ZK

meet _C in M.

* "Indessen besltzen wit doch nor in einem einzelneu hierher gehSrigen
FaUe eine positive Angabe dariiber, class die Griechen die Einschiebung mittels
Zirkel und Lineal ausgefiihrt haben, wenn namlich die gegebenen Geraden
zugleioh rech_e Winkel bilden, AIBC also _in Qusdrat wird." Zeuthen, op. c/t.
p. 281.

_- Pappus viL p. 778.
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Since, from the property of the rhombus, the angles LCM, KCM

are equal, and therefore CL, CKmake equal angles with the diameter
FG of the circle, it follows that CL = CK.

,=,

E

S D

Also EK -- EL, and CE is common to the triangles .ECK, £CL.

Therefore the said triangles are equal in M1 respects, and

L CKE = ; CLE = _. CI1E.

Now, by hypothesis,

EB : le..F-= EF : EC,

or EB : EK = EK : EU (since EF = EK),

and the angle CEK is common to the triangles ]_TK, KEG ; there-

fore the triangles .BEK, KEC are similar, and

_ C.BK = :_ CK.E

= ,'_.CHE, from above.

Again, '_ lICE = '_ A C_ = ,. BCK.

Thus in the triangles CBK, CIIE two angles are equal re-

spectively ;

therefore _ CEH = z_CKB.

But, since "_CKE = _ CHE, from above, the points K, C, E, H

are concyclic.

Hence =_CEH + _. CKH = (two right angles).

Accordingly, since _. CEIl = a_CKB,

L CKH + z_C:KB = (two right angles),

and BKH is a straight line.
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No_¢ the form of the proposition at once suggests that, in the

8th problem referred to, Apollonins had simply given a construction
involving the drawing of a circle cutting CD and .4C produced in

the points K, H respectively, and Pappus' proof that JBKH is a
straight line is intended to prove that HK verges towards B, or (in

other words) to verify that the construction given by ApoUonius
solves a certain v_rL¢ requiring BKtI to be drawn so tha_ KH is

e_ual $o a given length.
The analysis leading to the construction must have been worked

out somewhat as follows.

Suppose BK//drawn so that KH is equal to the given length k.

Bisect KH at 27, and draw 27E at right angles to KH meeting BC
produced in E.

Draw KM perpendicular to BC and produce it to meet CA in L.

Then, from the property of the rhombus, the triangles KCM, LCM
are equal in all respects.

Therefore KM= ML; and accordingly, if Mff be joined, M2_,
LH are parallel.

Now, since the angles at M, ff are right, a circle can be described
about EMKN.

Therefore ." CEK = ,:_MNE, in the same segment,

: z_CHK, by parallels.

Hence a circle can be described about CEIIK. It follows that

z. RCD = '_ CEK + :- CKE

= ,_CHK + L_CHE

= L.EHK = z_EKH.

Thereforethe trianglesEKH, DEC aresimilar.

Lastly, L.CKN = z_CBK + z.BCK ;

and, subtractingfrom these equalsthe equal anglesEKN, .BCK

respectively,we have
z_EKC = _.EBK.

Hence the triangles EBK, EKC are similar, and

BE : EK = EK : EC,

or BE. EC = EK _.

But, by similar triangles, EK : KH = DC : CB,

and the ratio DC : CB is given, while K]I is also given (= k).
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Therefore EK is given, and, in order to find E, we have only, in

the Greek phrase, to "apply to EC a rectangle exceeding by a square

figure and equal to the given area EKe. ''

Thus the construction given by Apollonius was clearly the

following s .

If k be t/_ give_ length, ta "kea strai!/ht line p s_tch that

p:k=AB:_C.

Apply to BG a rectangle exceeding by a square figure and equal to

the area p_. Let BE. EC be this rectangle, and with E as centre and

radius equal to p describe a circle cutting AC produced in H and

CD in K.

HK is then equal to k, and verges towards B, a_u proved by

Pappus; the problem is therefore solved.

The construction used by Apoilonius for the 'plane' w_at¢ with

reference to the rhombus having been thus restored by means of the

theorem given by Pappus, we are enabled to understand the purpose

* This construction was suggested to me by a careful examination of

Paplms ' proposiifion without other aid; but it is no new discovery.
Samuel Hor_ley gives the same construction in his restoration of Apollonii

Pergaei Inclinationum libri duo (Oxford, 1770); he explains, however, that
he went astray in consequence of a mistake in the figure given in the _ss.,
and was unable to deduce the construction from Pappus's proposition until he

was recalled to the right track by a solution of the same problem by Hugo
d'Omerique. This solution appears in a work entitled, A nalysis geometnca, dye
nova et ve_a methodu_ resolvendi tam problemata geometrica quam arithmeticas

quaest/one_, published at Cadiz in 1698. D'Omorique's construction, which is
practically identical with that of ApoUonms, appears to have been evolved by
means of an independent analysis of his own, since he makes no reference to
Pappus, as he does in other cases where Pappus is drawn upon (e.g. when giving
the construction for the case of the square attributed by Pappus to one

Heraclitus). The construction differs from that given above only in the fact
that the circle is merely used to deterunne the pmnt K, after which BE is joined
and produced to meet AC in H. Of other solutions of the same problem two
may here be mentioned. (1t The solution contained in Marino Ghetaldi's
posthumous work De P_esolunone et Corapositione Mathematics Libri quinque

(Rome, 1630), and included among the solutions of other problems aU purporting
to be solved "mcthodo qua antiqui utebautur," is, though geometrical, entirely
different from that above given, being effected by means of a reduction of the

problem to a simpler plane _¢L_ of the same character as that assumed by
Hippocrates in his Quadrature of lungs. (2) Christian Huygens (De eirculi
magnttudine invents; aeeedunt problematura quorundara illustrium conmtructiones,

Lugduni Batavorum, 1654) gave a rather complicated solution, which may be
described as a generalisation of Heraclitus' solution in the ease of a square.
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for which Pappus, while still on the subject of the "8th problem "

of Apollonius, acids a solution for the particular case of the square

(which he calls a "problem after Heraclitus ") with an iatroductory
lemma. It seems clear that Apollonius did not treat the case of the

square separately from the rhombus because the solution for the

rhombus was equally applicable to the square, and this supposition
is confirmed by the fact that, in setting out the main problems

discussed in the vt_cr,_, Pappus only mentions the rhombus and not

the square. Being however acquainted with a solution by one
IIeraclitus of the w_a_ relating to a square which was not on the

same lines as that of Apollonius, while it was not applicable to the

case of the rhombus, Pappus adds it as an alternative method for

the square which is worth noting*. This i_ no doubt the explanation
of the heading to the lemma prefixed to Heraclitus' problem which

Hultsch found so much difficulty in explaining and put in brackets

as an interpolation by a writer who misunderstood the figure
and the object of the theorem. The words mean "Lemma useful

for the [problem] with reference to squares taking the place
of the rhombus" (literally "having the same property as the

rhombus"), i.e. a lemma useful for Heraclitus' solution of the

* This view of the matter receives strong support from the following
facts. In Pappus' summary (p. 670) of the contents of the _et_¢e_of Apollomus
"two cases" of the p_SaLswith reference to the rhombus are mentioned last
among the particular problemsgiven in the first of the two Books. As we have
seen, one case (that given above) was the subject of the "8th problem" of
Apollonius, and it is equally clear that the other case was dealt with in the
"9th problem." The other ease is clearly that in which
the line to be drawn through B, instead of crossing the H A C
exterior angle of the rhombus at C, lies across the angle
C itself, i.e. meets CA, CD both produced. In the former
case the solution of the problem is always possible what-
ever be the length of k; but in the second case clearly
the problem is not capable of solution if k, the given
length, is less than a certain minimum. Hence the
problem requires a &op_ to determine the minimum K
length of k. Avcordingiy we find Pappus giving, after
the interposition of the case of the square, a "lemma useful for the &op_/zJ_of
the 9th problem," which proves that, if CH-_ CK and B be the middle point of
HK, then HK is the least straight line which can be drawn through B to meet
CH, CK. Pappus adds that the b_l_Js for the rhombus is then evident; if
HK be the line drawn through B perpendicular to CB and meeting CA, CD
produced in H, K, then, in order that the problem may admit of solution, the
given length k must be not less than HK.
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vE_r_ in the particular case of a square _. The lemma is a_
follows.

ABCD being a square, suppose BHE drawn so as to mee_ CD in

1t and AD produced in E_ and let EF be drawn perpendicular to BE
meeting BC produced in F. To prove that

CF _= BC "_+ liE'.

Suppose £G drawn parallel to DC meeting CF in G. Then

since BEF is a right angle, the angles IIBC, FEG are equal.

c o F

Therefore the triangles BCH, EGF are equal in all respects, and
EF = BIt.

Now BF _ -- BE 2+ EF _,

or BC . BF + BF. FC = BH. BE + BE. £H + EF'.

But, the angles HCF, HEF being right, the points C, H, E, F
are concyclic, and therefore

BC. BF = BH . BE.

Subtracting these equals, we have

BF. FC - BE. Eli + EF'

= BE. Eli + BH 2

= BH. HE + EH' + BH"

= EB. BH + EH t

FB. BC + EH'.

* Hultseh translates the words k_a yy_a_o_ el_r6 _w_rerpa_&_y _ro_of_rw_
_h a_r_ 7_ _/4_oJ (p.780) thus, "Lemma utile ad problemade quadratis quorum
summa rhomboaeqnMiRest," and has a note in his Appendix (p. 1260) explaining
what he supposes to bemeaut. The'squares' he takes to b_ the given square
and the squareon the given length of the intercept, and the rhombus to be one
for which he indicates a construction but which is not shown in Pappus' figure.
Thus he is obliged to translate r_ _p_ as "a rhombus," which is one objec-
tion to his interpretation, while ',whose squares are equal" scarcely seems a
possible rendering of _ro_odrro_r& aSrd.
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Take away the common part BC. CF, and
CF _ = BC" + EH'.

Heraclitus' analysis and construction are now as follows.

Suppose that we have drawn BHE so that H_ has a given

length k.

Since CF _= BC _+ EH _, or BC 2+ k 2,

and/_C and k are both given,

CF is given, and therefore BF is given.

Thus the semicircle on ]_F as diameter is given, and therefore
also E, its intersection with the given line ADE; hence BE is

given.

To effect the construction, we first find a square equal to the

sum of the given square and the square on k. We then produce
BC to F so that C$' is equal to the side of the square so found. If

a semicircle be now described on BF as diameter, it will pass above

D (since CF_ CD, and therefore ]_C. CF> CD2), _tnd will therefore
meet AD produced in some point E.

Join HE meeting CD in H.

Then HE = l¢, and the problem is solved.



CHAPTER VI.

CUBIC EQUATIONS.

IT has often been explained }low the Greek geometers were able

to solvc geometrically all forms of the quadratic equation which give

positive roots ; while they could take no account of others because
the conception of a negative quantity was unknown to them. The

quadratic equation was regarded as a simple equation connecting

areas, and its geometrical expression was facilitated by the methods

which they possessed of transforming any reetiliueal areas whatever
into parallelograms, rectangles, and ultimately squares 7 of equal

area ; its solution then depended on the principle of appticatwn of
areas, the discovery of which is attributed to the Pythagoreans.

Thus any plane problem which could be reduced to the geometrical
equivalent of a quadratic equation with a positive root was at once

solved. A particular form of the equation was the pure quadratic,

which meant for the Greeks the problem of finding a square equal
to a given rectilineal area. This area could be transformed into a

rectangle, and the general form of the equation thus became x 2 :- ab,

so that it was only necessary to find a mean proportional between a

and b. In the particular case where the area was given as the
sum of two or more squares, or a.a the difference of two squares,

an alternative method depended on the Pythagorean theorem of

Eucl. I. 47 (applied, if necessary, any number of times successively).
The connexion between the two methods is seen by comparing

Eucl. vL 13, where the mean proportional between a and b is
found_ and Eucl. n. 14, where the same problem is solved without

the use of proportions by means of n 47, and where in fact the
formula used is

_=ab=\_-/ \ 2 /"
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The choice between the two methods was equally patent when the
equation to be solved was x_=pa", where p is any integer; hence

the 'multiplication' of squares was seen to be dependent on tile

finding of a mean proportional. The equation x2= 2a2 was the
simplest equation of the kind, and the discovery of a geometrical

construction for the side of a square equal to twice a given square

was specially important, as it was the beginning of the theory of

incommensurables or 'irrationals' (_h_c_v _pa_a_'c_'a) which was
invented by Pythagoras. There is every reason to believe that this

successful doubling of the square was what suggested the question
whether a construction could not be found for the doubling of the

cube, and the storie_ of the tomb erected by Minos for his son and

of the oracle bidding the Delians to double a cubical altar were no
doubt intended to invest the purely mathematical problem with an

element of romance. It may then have been the connexion between

the doubling of the square and the finding of one mean proportional

which suggested the reduction of the doubling of the cube to the

problem of finding two n_an ]rroportiouals between two unequal
straight lines. This reduction, attributed to Hippocrates of Chios,

showed at the same time the possibility of multiplyiT_ the cube

by any ratio. Thus, if x, y are two mean proportionals between
a, b, we ]lave

a:x=x:y=y:b,
and we derive at once

a : b=a_ : x s,

whence a cube (._) is obtained which }_ears to a3 the ratio b : a,

while any fraction P- can be transformed into a ratio between lines
q

of which one (the consequent) is equal to the side a of the given

cube. Thus the finding of two mean proportionals gives the solution

of any pure cubic equation, or the equivalent of extracting the cube

root, just as the single mean proportional is equivalent to extracting
the square root. For suppose the given equation to be _r_= bcd.

We have then only to find a mean proportional a between c and d,

and the equation becomes x 3= a_ . b = a3. b which is exactly the
(_

multiplication of a cube by a ratio between lines which the _wo

mean proportionals enable us to effect.
As a matter of fact, we do not find that the great geometers

were in the habit of reducing problems to the multiplication of the



CUBIC EQUATIONS. cxxv

cube eo _wmine, but to the equivalent problem of the two mean

proportionals ; and the cubic equation x3= a2b is not usually stated
in that form but as a proportion. Thus in ttle two propositions On
the Sphere and Cylinder II. l, 5, where Archimedes uses the two

t mean proportionals, it is required to find x where

he does not speak of finding the side of a cube equal to a certain

parallelepiped, as the analogy of finding a square equal to a given
rectangle might have suggested. So far therefore we do not find

any evidence of a general system of adding and subtracting solids

by transforming parallelepipeds into cubes and cubes into parallel-
epipeds which we should have expected to see in operation if the

Greeks had systematically investigated the solution of the general
form of the cubic equation by a method analogous to that of the

app/icatio;_ of areas employed ill de_ling with quadratic equatmns.

The question then arises, did the Greek geometers de_l thus
generally with the cubic equation

•v'±ax_± Bx±r=O,

which, on the supposition that it was regarded as an independent

problem in solid geometry, would be for them a simple equation
between solid figures, _ and a both repmsentlng linear magnitudes,

B an area Ca rectangle), and r a volume (a parallelepiped)? And

was the reduction of a problem of an order higher than that which
could be solved by means of a quadratic equatmn to the solution of

a cubic equation in the form shown above a regular and recognised

method of dealing with such a problem ? The only direct evidence
pointing to such a supposition is found in Archimedes, who reduces

the problem of dividing a sphere by a plane into two segments

whose volumes are in a given ratio (On tl_eSphere and Cylinder 1I. 4)
to the solution of a cubic equation which he states in a form
equivalent to

4a _ : x_ = (3a - x) : .... a ................. (1),
m+_

where a is the radius of the sphere, m : n the given ratio Cbeing a
ratio between straight lines of which m > n), and x the height of the

greater of the required segments. Archimedes explains that this is

a particular case of a more general problem, to divide a straight

line (a) into two parts (x, a - x) such that one part Ca- x) is to an-

other given straight line (c) as a given area Cwhich for convenience'
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sake we suppose transformed into a square, b_) is to the square on
the other part (_), i.e. so that

(a-_) :5 = b': _. ........................... (2).

He further explains that the equation (2) stated thus generally ,

requires a $topt(TpJ_, i.e_ that the limits for the possibility of a real

solution, etc., require to be investigated, but that the particular case
(with the conditions obtaining in the particular proposition) requires

no ttop_/_, i.e. the equation (1) will always give a real solution.
He adds that "the analysis and synthesis of both these problems

will be given at the end." That is, he promises to give separately a

complete investigation of the equation (2), which is equivalent to the

cubic equation
(a - x) = b'c ........................... (3)

and to apply it to the particular case (1).
Wherever the solution was given, it was temporarily lost, having

apparently disappeared even before the time of Dionysodorus and

Diocles (the latter of whom lived, according to Cantor, not later
than about 100 B.c.); but Eutocius describes how he found an

old fragment which appeared to contain the original solution of
Archimedes, and gives it in full. It will be seen on reference to

Eutocius' note (which I have reproduced immediately afl_er the

proposition to which it relates, On the Sphere and Cylinder If. 4)

that the solution (the genuineness of which there seems to be no
reason to doubt) was effectod by means of the intersection of a

parabola and a rectangular hyperbola whose equations may re-

spectively be written thus,
b2

_= y,
6

(a - x)y = ac.

The _pL_ takes the form of investigating the maximum

possible value of x _ (a-x), and it is proved that this maximum
2

value for a real solution is that corresponding to the value x = _ a.

by showing that, if b_c = _7 a_' the curves touch
This is established

at the point for which x = 3 a. If on the other hand b2c <
4

_7 a_' it

is proved that there are two real solutions In the particular case

(1) it is clear that the condition for a real solution is satisfied, for
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the expression in (1) corresponding to bgcin (2) is m 4a_, and it

is only necessary that
m_

m+n

which is obviously true.

Hence it is clear that not only did Archimedes solve the cubic

equation (3) by means of the intersections of two conics, but he also

discussed completely the conditions under which there are 0, 1 or 2

roots lying between 0 and a. It is to be noted further that the
_topto'l_J_ is similar in charac_r to that by which Apollonius

investigates the number of possible normals that can be drawn

to a conic from a given point*. L_stly, Archimedes' method is
seentobe an extensionofthatused by Menaechmus forthesolution

ofthe pure cubicequation. Thiscan be put intheform

a_ : z_= a : b,

which can again be put in Archimedes' form thus,

a2 : x_=x : b,

and the conics used by Menaechmus are respectively

_d = ay, _ = ab,

which were of course suggested by the two mean proportionals

satisfying the equations

a:x=x:y=y:b.

The case above described is not the only one where we may
assume Archimedes to have solved a problem by first reducing it

go a cubic equation and then solving that. At the end of the

preface to the book On Co_wids and Spherold_ he says that the
results therein obtained may be used for discovering many theorems

and problems, and, as instances of the latter, he mentions the

following, "from a given spheroidal figure or conoid to cut off,

by a plane drawn parallel to a given plane, a segment which shall

be equal to a given cone or cylinder, or to a given sphere." Though
Archimedes does not give the solutions, the following considerations

may satisfy us as to his method.

(1) The case of the 'right-angled conoid' (the paraboloid of

revolution) is a ' plane' problem and therefore does not concern us
here.

Cf. ,_polhrniut of Perga, p. 168 sqq.
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(2) In the case of the spheroid, the volume of the whole

spheroid could be easily ascertained, and, by means of that, the

ratio between the required segment and the remaining segment;

after which the problem could be solved in exactly the same way

as the similar one in the case of the sphere above described,
since the results in On Conoids and Spheroids, Props. 29--32,

correspond to those of On the Sphere and Cylinder If. 2. Or

Archimedes may have proceeded in this case by a more direct
method, which we may represent thus. Let a plane be drawn

through the axis of the spheroid perpendicular to the given

plane (and therefore to the base of the required segment). This
plane will cut the elliptical base of the segment in one of its

axes, which we will call 2y. Let x be the length of the axis

of the segment (or the length intercepted within the segment
of the diameter of the spheroid passing through the centre of the

base of the segment). Then the area of the base of the segment will

vary as yg (since all sections of the spheroid parallel to the given
plane must be similar), and therefore the volume of the cone which

has the same vertex and base as the required segment will vary as
y_x. And the ratio of the volume of the segment to that of the

cone is (On Conoids and Spheroids, Props. 29--32) the ratio
(3a -x) : (2a-x), where 2a is the length of the diameter of the

spheroid which passes through the vertex of the segment. There-
fore

y2x" 3a -x2-J---x = C,

where C is a known volume. Further, since x, y are the coordinates

of a point on the elliptical section of the spheroid made by the plane

through the axis perpendicular to the cutting plane, referred to a

diameter of that ellipse and the tangent at the extremity of the

diameter, the ratio y_:x (2a-x) is given. Hence the equation
can be put in the form

x 2 (3a - x) = b_c,

and this s_gain is the same equation as that solved in the fragment

given by Eutocius. A &opta_ is formally necessary in this case,
though it only requires the constants to be such that the volume

to which the segment is to be equal must be less than that of the
whole spheroid.

(3) For the 'obtuse-angled conoid' (hyperbeloid of revolution)

it would be necessary to use the direct method just described for
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the spheroid, and, if the notation be the same, the corresponding
equations will be found, with the help of On Conoixls and Spheroids,
Props. 25, 26, to be

3a+x ,
_. 2a_- (,,

and, since the ratio y2 : x (2a + x) is comqtant,

x _ (3a + x) = b_c.

If this equation is writ_n in the form of a proportion like the
similar one above, it becomes

b_ : _= (3a+z) : c.

There can be no doubt that Archimedes solved this equation as
well as the similar one with a negative sign, i.e. he solved the two

equations
x 8+ ax _¥ b'c : O,

obtaining all their positive real roots. In other words, he solved

completely, so far as the real roots are concerned, a cubic equation
in which the term in x is absent, although the determination of the

positive and negative roots of one and the same equation meant for
him two separa_ problems. And it is clear that all cubic equations

can be easily reduced to the type which Archimedes solved.

We possess one other solution of the cubic equation to which
the division of a sphere into segments bearing a given ratio to one

another is reduced by A.rchimede_. This solution is by Dionysodorus,

and is given in the same note of Eutocius*. Dionysodorus does not

generalise the equation, however, as is done in the fragment quoted

above ; he merely addresses himself to the particular case,

4a_ : x'= (3a-x) : m + n a,

thereby avoiding the necessity for a 8_op_¢/_. The curves which he

uses are the parabola

m a(3a-x)=y"m+n

and the rectangular hyperbola

m 2a I = xy.

When we turn to Apollonius, we find him emphasising in his

• On the Sphere and Cylinder n. 4 (note st end).

_.A. i
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preface to Book to. of the Con/cs* the usefulness of investigations
of the possible number of points in which conics may intersect one

another or circles, because "they at all events afford a more ready

means of observing some things, e.g. that several solutions are.
possible, or that they are so many in number, and again that no

solution is possible"; and he shows his mastery of this method

of investigation in Book v., where he determines the number of
normals that can be drawn to a conic through any given point, the

condition that two normals through it coincide, or (in other words)
that the point lies on the evolute of the conic, and so om For these

purposes he uses the points of intersection of a certain rectangular

hyperbola with the conic in question, and among the cases we find

(v. 51, 58, 62) some which can be reduced to cubic equations, those

namely in which the conic is a parabola and the axis of the parabola

is parallel to one of the asymptotes of the hyperbola. Apollonius
however does not bring in the cubic equation, he addresses himself

to the direct geometrical solution of the problem in hand without

reducing it to another. This is after all only natural, because the

solution necessitated the drawing of the rectangular hyperbola in

the actual figure containing the conic in question ; thus, e.g. in the
case of the problem leading to a cubic equation, Apollonius can, so

to speak, compress two steps into one, and the introduction of the

cubic as such would be mere surplusage. The case was different
with Archimedes, when he had no conic in his original figure; and

the fact that he set himself to solve a cubic somewhat more general

than that actually involved in the problem made separate treatment
with a number of new figures necessary. Moreover Apollonins was

at the same time dealing, in other propositions, with cases which did

not reduce to cubics, but would, if put in an algebraical form, lead

to biquadratic equations, and these, expressed as such, would have
had no meaning for the Greeks ; there was therefore the less reason

in the simpler case to introduce a subsidiary problem.

As already indicated, the cubic equation, as a subject of syste-

matic and independent study, appears to have been lost sight of
within a century or so after the death of Archimedes. Thus Diocles,

the discoverer of the cissoid, speaks of the problem of the division of

the sphere into segments in a given ratio as having been reduced

by Archimedes "to another problem, which he does not solve in

his work on the sphere and cylinder"; and he then proceeds to

* Apollonius of Perga, p. lxxiii.
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solve the original problem directly, without in any way bringing
in the cubic. This circumstance does not argue any want of

geometrical ability in Diocles; on the contrary, his solution of the
original problem is a remarkable instance of dexterity in the use of
conics for the solution of a somewhat complicated problem, and it

proceeds on independent lines in that it depends on the intersection
of an ellipse and a rectangular hyperbola, whereas the solutions of
the cubic equation have accustomed us to the use of the parabola

and the rectangular hyperbolm I have reproduced Diocles' solution

in its proper place as part of the note of Eutocius on Archimedes'

proposition ; but it will, I think, be convenient to give here its
equivalent in the ordinary notation of analytical geometry, in

accordance with the plan of this chapter. Archimedes had proved

[On the Sphere and Cylind_ H. 2] that, if k be the height of a
segment cut off by a plane from a sphere of radius a, and if h be

the height of the cone standing on the same base as that of the

segment and equal in volume to the segment, then

(3a-k) :(2a-k)=h:k.

Also, if h" be the height of the cone similarly related to the

remaining segment of the sphere,

(a + k) : k=h' : (2a-k).

From these equations we derive

(h-k) :k=a:(_a-k),

and (h'-2a @�¤�:(2a-k)-a:k.

Slightly generalising these equations by substituting for a in the

third term of each proportion another length b, and adding the

condition that the segments (and therefore the cones) are to bear to
each other the ratio m : n, Diodes sets himself to solve the three

equations
(t,-k): k=b: (2a-k)/

b:k ...........

2,,+k): ,n: I (A)and h : h =

Suppo_e m > n, so that k > a. The problem then is to divide a

straight line of length 2a into two parts k and (2a-k) of which k is

the greater, and which are such that the three given equations are
all simultaneously satisfied.

Imagine two coordinate axes such that the origin is the middle

point of the given straight line, the axis of y is at right angles to it,
i2
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and x is positive when measured along that half of the given straight
line which is to contain the required point of division. Then the

conics drawn by Diocles are

(1) the ellipse represented by the equation

+a- m)'=_/(a +b)'- _},(y

and (2) the rectangular hyperbola

(x + a) (y + b) = 2ab.

One intersection between these conics gives a value of x between 0

and a, and leads to the solution required. Treating the equations

algebraically, and eliminating y by means of the second equation
which gives

a--x

y-- --. b,
a+x

we obtain from the first equation

(a- m)' 1+ = - {(a. 5)'- x'},a+x m

that is, (a+x) 2(a+b-x) m= n (a - x) 2 (a + b + x) ......... (B).

In other words Diocles' method is the equivalent of solving a

complete cubic equation containing all the three powers of x and a

constant, though no mention is made of such an equation.
To verify the correctness of the result we have only to remember

that, x being the distance of the point of division fl'om the middle

point of the given straight line,

k=a+x, 2a-k=a-x.

Thus, from the first two of the given equations (A) we obtain
respectively

h=a+x+a+x.b,
a--m

Ot--x

h'=a-m+ .... .b,
(t.4-m

whence, by means of the third equation, we derive

(_+_)'(_+b- _)=_'_(a- _)'(a+b+_),

which is the same equation as that found by elimination above (B).
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I have purposely postponed, until the evidence respecting the

Greek treatment of the cubic equation was complete, any allusion
to an interesting hypothesis of Zeuthen's* which, if it could be

accepted as proved, would explaJn some difficulties involved in

Pappus' account of the orthodox classification of problems and loci.

I have already quoted the passage in which Pappus distinguishes

the problems which are plane (_Tr_rc_a), those which are solid (o'r_pcd)
and those which are linear (),pal_paxd) ?. Parallel to this division of
problems into three orders or classes is the distinction between three

classes of loci++. The first class consists of plane loci (¢&rot _ri_r¢$ot)
which are exclusively straight lines and circles, the second of solid

loci (r&rot o_r_pcot") which are conic sections§, and the third of

linear loci (rdwot ypalzttt_o D. It is at the same time clearly implied
by Pappus that problems were originally called plane, solid or linear
respectively for the specific reason that they required for their

solution the geometrical loci which bore the corresponding names.
But there are some logical defects in the classification both as
regards the problems and the loci.

(1) Pappus speaks of its being a serious error on the part of
geometers to solve a plane problem by means of conics (i.e. ' solid

loci ') or' linear' curves, and generally to solve a problem "by mean_

of a foreign kind" (_ dvotKc_ov y_vov_). If this principle were

applied strictly, the objection would surely apply equally to the
solution of a 'solid' problem by means of a 'linear' curve. Yet,

though e.g. Pappus mentions the conchoid and the cis_id as being

'linear' curves, he does not object to their employment in the

solution of the problem of the two mean proportionals, which is a
' solid' problem.

(2) The application of the term 'solid loci' to the three conic

sections must have reference simply to the definition of the curves
as sections of a solid figure, viz. the cone, and it was no doubt in

contrast to the 'solid locus' that the 'plane locus' was so called.

This agrees with the statement of Pappus that ' plane' problems may

**D_e Lehre yon den Kegelschnitten, p. 226 sqq.
ar p. eiii.

Psppus vn. pp. 652, 662.
§ It is true that Proclus (p. 394, ed. Friedlein) gives a wider definition of

"solid lines" ss those which arise "from some section of a solid figure, ss the
eyhndrical helix and the come curves"; but the reference to the cylindrical
helix would seem to be due to some confumon.
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properlybe so calledbecausethe linesby means ofwhich they are

solved"have theiroriginin a plane." But, though thismay be

regarded as a satisfactorydistinctionwhen 'plane'and 'solid'loci

are merelyconsideredinrelationtoone another,itbecomes at once

logicallydefectivewhen the thirdor 'linear'classisalsobrought

in. For,on the one hand, Pappus shows how the 'quadratrix'(a

'linear'curve) can be produced by a constructionin three

dimensions ("by means of surface-loci," _ _v _pb_ _,qJavclaL_

r_r_v); and, on the other hand, other 'lincar' loci, the conchoid
and cissoid, have their origin in a plane. If then Pappus' account

of the origin of the terms 'plane' and ' solid' as applied to problems

and loci is literally correct, it would secm necessary to assume that
the third name of ' lincar' problems and loci was not invented until

a period when the terms 'plane' and ' solid loci' had been so long

recognised and used that their origin was forgotten.

To get rid of these difficulties, Zeuthen suggests that the terms

'plane' and ' solid' were first applied to problems, and that they
came afterwards to t_e applied to the geometrical loci which were
used for the purpose of solving them. On this interpretation, when

problems which could be solved by means of the straight line and
circle were called 'plane,' the term is supposed to have had reference,

not to any particular property of the straight line or circle, but to
the fact that the problems were such as depend on an equation of a

degree not higher than the second. The solution of a quadratic
equation took the geometrical form of application of areas, and the

term ' plane' became a natural one to apply to the class of problems
so soon as the Greeks found themselves confronted with a new cla_

of problems to which, in contrast, the term ' solid' could be applied.
This would happen when the operations by which problems were

reduced to applications of areas were tried upon problems which

depend on the solution of a cubic equation. Zeuthen, then,
supposes that the Greeks sought to give this equation a similar

shape to that which the reduced ' plane' problem took, that is, to

form a simple equation between solids corresponding to the cubic

equation
_+a_+Bx+r=o;

the germ ' solid' or 'plane' being then applied according as it had

been reduced, in the manner indicated, to the geometrical equivalent

of a cubic or a quadratic equation.

Zeughen further explains the term ' linear problem' as having



CUBIC EQUATIONS. exxxv

been invented afterwards to describe the cases which, being
equivalent to algebraical equations of an order higher than the

third, would not admit of reduction to a simple relation between

lengths, areas and volumes, and either could not be reduced to an
equation at all or could only be represented as such by the use of

compound ratios. The term 'linear' may perhaps have been appli¢.d
because, in such cases, recourse was had to new classes of curves,

directly and without any intermediate step in the shape of an

equation. Or, possibly, the term may not have been used at all

until a time when the original source of the names 'plane' and

'solid' problems had been forgotten.
On these assumptions, it would still be necessary to explain how

Pappus came to give a more extended meaning to the term ' solid

problem,' which according to him equally includes those problems
which, though solved by the same method of conics as was used to

solve the equivalent of cubms, do not reduce to cubic equations but

to biquadratics. This is explained by the supposition that, the

cubic equation having by the time of Apollonius been obscured
from view owing to the attention given to the method of solution

by means of conics and the discovery that the latter method was

one admitting of wider application, the possibility of solution by
means of conics came itself to be regarded as the criterion deter-

mining the class of problem, and the name 'solid problem' came
to be used in the sense given to it by Pappus through a natural

misapprehension. A similar supposition would account, in Zeuthen's
view, for a circumstance which would otherwise seem strange, viz.

that Apollonius does not use the expression ' solid problem,' though

it might have been looked for in the preface to the fourth Book
of the Conics. The term may have been avoided by Apollonius
because it then had the more restricted meaning attributeA to it by

Zeuthen and therefore would not have been applicable to all the

problems which Apollonius had in view.
It must be admitted that Zeuthen's hypothesis is in several

respects attractive. I cannot however feel satisfied that the

positive evidence in favour of it is sufficiently strong to outweigh

the authority of Pappus where his statements tell the other way.
To make the position clear, we have to remember that Menaechmus,
the discoverer of the conic sections, was a pupil of Eudoxus who

flourished about 365 B.c. ; probably therefore we may place the

discovery of conics at about 350 B.C. Now Aristaeus ' the elder'
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wrote a book on solid loci (_wp_o'_ rJrrot) the date of which Cantor

concludes to have been about 320 s.c. Thus, on Zeuthen's hypo-

thesis, the ' solid problems' the solution of which by means of conies
caused the latter to be called 'solid loci' must ]lave been such as

had been Mreaciy investigated and recognised as solid problems

before 320 s.c., while the definite appropriation, so to speak, of the

newly discovered curves to tile service of the class of problems must
have come about in the short period between their discovery and

the date of Aristaeus' work. It is therefore important to consider

what particular problems leading to cubic equations apl_ar to have
been the subject of speculation before 320 B.c. We have certainly

no ground for assuming that the cubic equation used by Archimedes

(On the @here and Cylinder II. 4) was one of these problems; for

the problem of cutting a sphere into segments bearing a given ratio

to one another could not have been investlgated by geometers who

had not succeeded in finding the volume of a sphere and a segment
of a sphere, and we know that Archimedes was the first to discover

this. On the other hand there was the duplication of the cube, or

the solution of a pure cubic equation, which was a problem dating
from very early times. Also it is certain that the trisection of an

angle had long exercised the minds of the Greek geometers. Pappus

says that "the ancient geometers" considered this problem and first

tried to solve it, though it was by nature a solid problem (_rpJfl_.,//ta

_r_ _go'_ o'r_pcbv _rd.p)(ov), by means of plane considerations (_& raTv
iTrt_ri&ov) but failed; and we know that Hippies of Ells invented,

about 420 B.c., a transcendental curve which was capable of being

used for two purposes, the trLqection of an angle, and the quadrature
of a circle _. This curve came to be called the QuadratrixT, but, as

Deinostratus, a brother of Memmchmus, was apparently the first to

apply the curve to the quadrature of the circleS, we may no doub_

conclude that it was originally intended for the purpose of trisecting

* Proelus (ed. Friedlein), p. 272.
_"The character of the curve may be described as follows. Suppose there

are two rectangular axes Oy, Ox and that a straight line OP of a certain length
(a) revolves uniformly from a position along Oy to a position along Ox, while a
straight llne remaining always parallel to Ox and pa_sing through P in its
original position also moves uniformly and reaches Ox in the same time as the
moving radius OP. The point of intersection of this line and OP describes the
Quadrstrix, which may therefore be represented by the equation

Pappas _v.pp. 250----2.
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an angle. Seeing therefore that the Greek geometers had used their
best efforts to solve this problem before the invention of conies, it
may easily be, that they had succeeded in reducing it to the geo-
metrical equivalent of a cubic equation. They would not have been
unequal to effecting this reduction by means of the figure of the
r_t_ given above on p. cxil. with a few lines added. The proof
would of course be the equivalent of eliminating x between the two
equations

xy = ab
(x - a)'_+ (y - b)2= 4 (a_+ b2)) ................ (a)

where x=Dl,, y=FP=EC, a= DA, b=DB.

The second equation gives

(x + a) (x - 3a) - (y + b) (3b - y).

From the first equation it is ea_ily seen that

(x +a) : (y+b)=a : y,

and that (x - 3a) y = a (l_- 3//) ;

we have therefore a_(b - 3y) = y'_(3b - y) ................. (fl)

[or ¢- 3@,- 3_ +_-_b--0].
If then the trisection of an angle had been reduced to the geo-
metrical equivalent of this cubic equation, it would be natural for
the Greeks to speak of it as a solid problem. In this respect it
would be seen to be similar in character to the simpler problem of

the duphcation of the cube or the equivalent of a pure cubic
equation; and it would be natural to see.whether the transformation
of volumes would enable the mixed cubic to he reduced to the form

of the pure cubic, in the same way as the transformation of areas
enabled the mixed quadratic to be reduced to the pure quadratic.
The reduction to the pure cubic would soon be seen to be impossible,
and the stereometric line of investigation would prove unfruitful
and be abandoned accordingly.

The two problems of the duplication of the cube and the
trisection of an angle, leading in one case to a pure cubic equation
and in the other to a mixed cubic, are then the only problems

leading to cubic equations which we can be certain tlmt the Greeks
had occupied themselves with up to the time of the discovery of the
conic sections. Menaeehmus, who discovered these, showed that

they could be successfully used for finding the two mean propor-
tion_lg and therefore for solving the pure cubic equation, and the
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next question is whether it had been proved before the date of

Aristaeus' Solid Loci that the trisection of an angle could be
effected by means of the same conics, either in the form of the

w_r_ above described directly and without the reduction to a cubic

equation, or in the form of the subsidiary cubic (/3). Now (1) the

solution of the cubic would be somewhat difficult in the days when

conics were still a new thing. The solution of the equation (/3) as
such would involve the drawing of the conics which we should

represent by the equations
_j = a2,

bx = 3a _+ 3by - y_,

and the construction would be decidedly more difficult than that

used by Archimedes in connexion with his cubic, which only requires
the construction of the conics

be

-aY,

(a- x) y= at;

hence we can hardly assume that the trisection of an angle in the

form of the subsidiary cubic _,]uation was solved by means of conics

before 320 B.c. (2) The angle may have been trisected by means
of conics in the sense that the w;cr_ referred to was effected by

drawing the curves (a), i.e. a rectangular hyperbola and a circle.

This could easily have been done before the date of Arist_eus ; but
if the assignment of the name 'solid loci' to conics had in view their

applicability to the direct solution of the problem in this manner

without any reference to the cubic equation, or simply becau_

the problem had been before proved to be ' solid' by means of the
reduction to that cubic, then there does not appear to be any

reason why the Quadratrix, which had been used for the same

purpose, should not at the time have been also regarded as a ' solid

locus,' in which case Aristaeus could hardly have appropriated the
latter term, in his work, to conics alone. (3) The only remaining

alternative consistent with Zeuthen's view of the origin of the

name 'solid locus' appears to be to suppose that conics were so

called simply because they gave a means of solving one ' solid

problem,' viz. the doubling of the cube, and not a problem of the
more general character corresponding to a mitred cubic equation, in

which case the justification for the general name ' solid locus' could

only be admitted on the assumption that it was adopted at a time
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when the Greeks were still hoping to be able to reduce the general
cubic equation to the pure forn_ I think however that the
traditional explanation of the term is more natural than this

would be. Conics were the first curves of general interest f_,r

the description of which recourse to solid figures was necessary as

distinct from the ordinary construction of plane figures in a planem;
hence the u_ of the term 'solid locus' for conics on the mere ground

of their solid origin would be a natural way of descrlhing the new

class of curves in the first instance, and the term would be likely
to remain in use, even when the solid origin was no longer thought
of, just as the individual conics continued to be called "sections of

a right_angled, obtuse-angled, and acute-angled" cone respectively.
While therefore, as I have said, tlle two problems mentioned

might naturally have been called ' solid problems' before the dis-
covery of 'solid loci,' l do not think there is sufficient evidence

to show that ' solid problem' was then or later a technical term

for a problem capable of reduction to a cubic equation in the sense

of implying that the geometrical equivalent of the general cubic
equation was investigated for its own sake, independently of it_

applications, and that it ever occupied such a recognised position

in Greek geometry that a problem would be considered solved so
soon as it was reduced to a cubic equation. If this had been so,

and if the _chnieal term for such a cubic was ' solid problem,' I

find it hard to see. how Archimedes could have failed to imply some-
thing of the kind when arriving at his cubic equation. Instead of

this, his words rather suggest that he hacl attacked it as res integra.
Again, if the general cubic had been regarded over any length of

time as a problem of independent interest which was solved by
means of the intersections of conics, the fact could hardly have been

unknown to Nicoteles who is mentioned in the preface to Book xv.

of the Conics of Apollonius as having had a controversy with Conon
respecting the investigations in which the latter discussed the maxi-

mum number of points of intersection between two conics. Now

Nicoteles is stated by Apollonius to have maintained that no use

* It is true that Archytas' solution of the problem of the two mean propor-
tionals used a curve of double curvature drawn on a cylinder ; but this wa_ not
such a curve as was likely to be investigated for itself or even to be regarded as
a /0¢u8, strictly speaking; hence the solid origin of this isolated curve would
not be likely to suggest objections to the appropriationof the term ' solid locus'
to conics.
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could be made of the discoveries of Conon for 8mpurp_; but it seems
incredible that Nicoteles could have made such a statement, even for

controversial purposes, if cubic equations then formed a recognised

class of problems for the discussion of which the intersections of
conics were necessarily all-important.

I think therefore that the positive evidence available will not

justify us in accepting the conclusions of Zeuthen except to the

following extent.

1. Pappus' explanation of the meaning of the term 'plane

problem' (Im'_rESov _r#dflA_/*a) as used by the ancients carl hardly

be right, l_appus says, namely, that "problems which can be

solved by means of the straight line and circle may properly be

called plane (klTo_r' _v ¢iKgwo__r(z'cSa); for the lines by means of
which such problems are solved have their origin in a plane." The

words "may properly be called" suggest that, so far as plane

problems were concerned, Pappus wa_s not giving the ancient
definition of them, but his own inference as to why they were

called 'plane.' The true sig_fificancc of the term is no doubt, as

Zeuthen says, not that straight lines and circles have their origin

bl a plane (which would be equally true of some other curves), but

that the problems in question admitted of solution by the ordinary
plane methods of transformation of areas, manipulation of simple

equations between areas, and in particular the application of areas.

In other words, plane problems were those which, if expressed

algebraically, depend on equations of a degree not higher than the
second.

2. When further problems were attacked which proved to be

beyond the scope of the plane methods referred to, it would be

found that some of such problems, in particular the duplication
of the cube and the trisection of an angle, were reducible to simple

equations between v_umes instead of equations between areas _ and
it is quite possible that, following the analogy of the distinction

existing in nature between plane figures and solid figures (an analogy
which was also followed in the distinction between numbers as 'plane'

and 'solid' expressly drawn by Euclid), the Greeks applied the term

'solid problem' to such a problem as they could reduce to an
equation between volumes, as distinct from a 'plane problem'

reducible to a simple equation between areas.

3. The first ' solid problem' in this sense which they succeeded
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in solving was the multiplication of the cube, corresponding to the
solution of a pure cubic equation in algebra, and it was found that

this could be effected by means of curves obtained by making plane

sections of a solid figure, namely the cone. Thus curves having a
solid origin were found to solve one particular solid problem, which

could not but seem an appropriate result ; and hence the conic, as

being the simplest curve so connected with a solid problem, was
considered to be properly termed a ' solid locus,' whether because of

its application or (more probably) because of its origin.

4. Further investigation showed that the general cubic equation
could not be reduced, by means of stereometric methods, to the

simpler form, the pure cubic ; and it was found nece_ry to try
the method of conics directly either (1) upon the derivative cubic
equation or (2) upon the original problem which led to it. In

practice, as e.g. in the case of the trisection of an angle, it was
found that the cubic was oft_m more difficult to solve in that

manner than the original problem was. Hence the reduction of
it to a cubic was dropped as an unnecessary complication, and

the geometrical equivalent of a cubic equation stated as an in-

dependent problem never obtained a permanent footing as the
' solid problem' par excellence.

5. It followed that solution by conics came to be regarded as

the criterion for distinguishing a certain class of problem, and, as
conics had retained their old name of ' solid loci,' the corresponding

term ' soli.-1 problem' came to be used in the wider sense in which

Pappus interprets it, according to which it includes a problem
depending on a biquadratie as well as a problem reducible to a

cubic equation.

6. The terms 'linear problem' and 'linear locus' were then

invented on the analogy of the other terms to describe respectively

a problem which could not be solved by means of straight lines,
circles, or conics, and a curve which could be used for solving such

a problem, as explained by Pappus.



CHAPTER VII.

ANTICIPATIONS BY ARCHIMEDES OF THE INTEGRAL CALCULUS.

IT has been often remarked that, though the method of ex]_aust_on
exemplified hi Euclid xiI. 2 really brought the Greek geometers face

to face with the infinitely great and the infinitely small, they

never allowed themselves to use such conceptions. It is true that

Antiphon, a sophist who is said to have often had disputes with
Socrates, had stated _ that, if one inscribed any regular polygon,

say a square, in a circle, then inscribed an octagon by constructing

isosceles triangles in the four segments, then inscribed isosceles

triangles in the remaining eight segments, and so on, "until the
whole area of the circle was by this means exhausted, a polygon

would thus be inscribed whose sides, in consequence of their small-
hess, would coincide with the circumference of the circle." But as

against this Simplicius remarks, and quotes Eudemus to the same

effect, that the inscribed polygon will never coincide with the

circumference of the circle, even though it be possible to carry

the division of the area to infinity, and to suppose that it would
is to set aside a geometrical principle which lays down that magni-

tudes are divisible ad infiniturat. The time had, in fact, not come

for the acceptance of Antiphon's idea, and, perhaps as the result of

the dialectic disputes to which the notion of the infinite gave rise,
the Greek geometers shrank from the use of such expressions as

infinitely great and infinitely small and substituted the idea of things

greater or less t]_an any ass_ned maxjnitude. Thus, as Hankel says.+,

they never said that a circle is a polygon with an infinite number of

Bre_schneider, p. 101.
I"Bretsehneider, p. 102.
+*Hankel, Zur GeschichLe der Mathemat:k im Alterthum und Mittelalter,

p. 123.
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infinitely small sides ; they always stood still before the abyss of the
infinite and never ventured to overstep the bounds of clear con-

ceptions. They never spoke of an infinitely close approximation or

a limiting value of the sum of a series extending to an infinite

number of terms. Yet they must have arrived practically at such
a conception, e.g., in the case of the proposition that circles are to

one another as the squares on their diameters, they must have been

in the first instance led to infer the truth of the proposition by the
idea that the circle,could be regarded as the limit of an inscribed

regular polygon with an indefi_nAtely increased number of corre-
spondingly small sides. They did not, however, rest satisfied with

such an inference; they strove after an irrefragable proof, and this,
from the nature of the case, could only be an indirect one. Ac-

cordingly we always find, in proofs by the method of exhaustion,
a demonstration that an impossibility is involved by any other

assumption than that which the proposition maintains. Moreover

this stringent verification, by means of a double reduaio ad ab-
surdurn, is repeated in every individual instance of the use of the
method of exhaustion; there is no attempt to establish, in lieu of

this part of the proof, any general propositions which could be

simply quoted in any particular case.
The above general characteristics of the Greek method of

exhaustion are equally present in the extensions of the method
found in Archimedes. To illustrate this, it will be convenient,

before passing to the eases where he performs genuine integrations,
to mention his geometrical proof of the property that the area of a

parabolic segment is four-thirds of the triangle with the same base
and vertex. Here Archimedes exhausts the parabola by continually

drawing, in each seg_nent left over, a triangle with the same base

and vertex as the segment. If A be the area of the triangle so

inscribed in the original segment, the process gives a series of areas

A, ta, (_)'_, ...

and the area of the segment is really the sum of the infinite series

a 11+ œ(I)_+.. }.
But Archimedes does not express it in this way. He first proves

that, if Ai, A2,...A_ be any number of terms of such a series, so that

A I =4Az, A 2= 4A_ ..., then

or A {1 + _ + (]-)' + ... + (_t)"-' + _(_)"-'} = _A.
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Having obtained this _sult, we should nowadays suppose n to

increase indefinitely and should infer at once that (_)"-* becomes

indefinitely small, and that the limit of the sum on the left-hand side

is the area of the parabolic segment, which must therefore be equal
to _A. Archimedes does not avow that he inferred the result in

this way ; he merely states that the area of the segment is equal

to s4A, and then verifies it in the orthodox manner by proving that

it cannot be either greater or less than ._A.
I pass now to the extensions by Archimedes of the method

of exhaustion which are the immediate subject of this chapter. It
will be noticed, as an essential feature of all of them, that

Archimedes takes both an inscribed figure and a circumscribed

figure in relation to the curve or surface of which he is investigating
the area or the solid content, and then, m_ it were, comlrresses the

two figures into one so that they coincide with one another and

with the curvilinear figure to be. measured; but again it must
be understood that he does not describe his method in this way or

say at any time that the given curve or surface is the limiting form

of the circumscribed or inscribed figure. I will take the cases

in the order in which they come in the text of this book.

|. Surface of a sphere or spherical segment.

The first step is to prove (On the Sphere and Cylinder I. 21, 22)

that, if in a circle or a segment of a circle there be inscribed

polygons, whose sides AB, BC, CD .... are all equal, as shown

in the respective figures, then

(a) for the circle

(BB' + CC' +...) : AA' = A'B : BA,

(b) for the segment

(BB' + CC' + ... + KK' + LM) : AM--= ,4'B : BA.

Next it is proved that, if the polygons revolve about the

diameter AA', the surface described by the equal sides of the

polygon in a complete revolution is [L 24, 35]

(a) equal to a circle with radius _]AB (JBB' +-CC' +... + YY_)

or (b) equal to a circle with radius _IAB (ttB'+ CC'+... + L#I-).

Therefore, by means of the above proportions, the surfaces

described by the equal sides are seen to be equal to
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(a) a circle with radius JXA' _I'-B:

and (b) a circle with ra_lius _/A_/. A'I3 ;

they are therefore respectively [L 25, 37] less than

(a) a circle with radius AA',

(b) a circle with radius AL.

Archimedes now proceeds to take polygons circumscribed to the
circle or segment of a circle (supposed in this case to be less than a
semicircle) so that their sides are parallel to those of the inscribed
polygons before mentioned (cf. the figures on pp. 38, 5l), and he
proves by like steps [L 30, 40] that, if the polygons revolve about the
diameter as before, the surfaces described by the equal sides during
a complete revolution are grea_r than the same circles respectively.

Lastly, having proved these results for the inscribed and
circumscribed figures respectively, Archimedes concludes and proves
[I. 33, 42, 43] that the surface of the sphere or the segment of the
sphere is equal to the first or the second of the circles respectively.

In order to see the effect of the successive steps, let us express
the several results by means of trigonometry. If, in tile figures on
pp. 33, 47 respectively, we suppose 4n to be the number of side_qin
the polygon inscribed in the circle and 2n the number of the equal
sides in the polygon inscribed in the segment, while in the latter
ca_e the angle A OL is denoted by a, the proportions given above
are respectively equivalent to the formulae _

77" . 271" 9r 7r

sin _Z +sm 2n---* "'" + sin (2n- 1) 2n - cot _,

f., . 2_ _}2 _sm n *sm n + "" + sin (_ - 1) + sin,
.= cot 2-n.and 1- cos a

Thus the two proportions give in fact a summation of the series

sin 8 * sin 2_ + ... + sin (n - 1) t9

both generally where n_ is equal to any angle a less than 7r,and in
the particular case where n is even and _ = 7r/n.

Again, the areas of the circles which are equal to the surfaces
described by the revolution of the equal sides of the inscribed

Theseformulaearetaken,witha shgh_modification,fromLoria,II l_eriodo
aureodellageometrtagreta, p. 108.

H.A. k
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polygons are respectively (if a be the radius of the great circle
of the sphere)

47ra'sin_- n sin--+sm:_;;2n_ + "'" +sin (2n- 1)2 n , or 4_-a2cOS4n ,
and

"E{ ° ]7ra2 . 2 sin 2n 2 sin - + sin -- + ... = sin (n- 1 + sin a ,

or :ra'. 2 cos _ (1
CO8 (l).

The areas of the circles which are equal to the surfaces described

by the equal sides of the circumscribed polygons are obtained from

the areas of the circles just given by dividing them by cos2_r/4_*and
cos' a/2n respectively.

Thus the results obtained by Archimede_ are the same as would

be obtained by taking the limiting value of the above trigonometri-
cal expressions wt,en n is indefinitely increased, and when therefore
cos _r/4n and cos a/2n are both unity

But the first expressions for the areas of the circles are (when n

is indefinitely increased) exactly what we represent by the
integrals

/:4_'a _. ½ sin 0 dO, or 47ra_,

and 7ra'. 2 sin 0 dO, or 2_ra-_(1 - cos a).

Thus Archimedes' procedure is the equivalent of a genuine
integration in each case.

2. Volume _ a sphere or a sector of a sp/_ere.

The method does not need to be separately set out in detail here,

because it depends directly on the preceding case. The investiga-
tion proceeds concurrently with that of the surface of a sphere or a

segment of a sphere. The same inscribed and circumscribed figures

are used, the sector of a sphere being of course compared with the
solid figure made up of the figure inscribed or circumscribed to the

segment and of the cone which has the _me base as that figure and
has its vertex at the centre of the sphere. It is then proved,

(1) for the figure inscribed or circumscribed to the sphere, that its
volume is equal to that of a cone with base equal to _he surface of

the figure and height equal to the perpendicular from the centre of

the sphere on any one of the equal sides of the revolving polygon,
(2) for the figure inscribed or circumscribed to the sector, that the
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volume is equal to that of a cone with base equal to the surface of
the portion of the figure which is inscribed or circumscribed to the

segment of the sphere included in the sector and whose height is the

perpendicular from the centre on one of the equal sides of the
polygon.

Thus, when the inscribed and circumscribed figures are, so

to speak, compressed into one, the taking of the limit is practically
the same thing in this case as in the case of the surfaces, the
resulting volumes being simply the before-mentioned surfaces

multiplied in each case by _a.

3. Area of an ellipse.

This case again is not strictly in point here, because it does
not exhibit any of the peculiamties of Archimedes' extensions of

the method of exhaustion. That method is, in fact, applied in
the same manner, mutatis mutandls, as in Eucl. xii. 2. There

is no simultaneous use of inscribed and circumscribed figures, but
only the simple exhaustion of the ellipse and auxiliary circle by

increasing to any desired extent the number of sides in polygons

inscribed to each (On ConoicL_ and Spheroids, Prop. 4).

4. Volume of a segment of a parabolold of revolution

Archimedes first states, as a Lemma, a result proved incidentally

in a proposition of another treatise (On Spirals, Prop. 11), viz. that,
if there be n terms of an arithmetical progression h, 2h, 3h, ..., then

h + 2h - 3h + nh _ ½n:h[
and h _- 2h + 3h + .. + (n - 1) h < ½n"h) ............. (a).

_-NTexthe inscribes and circumscribes to the segment of the

paraboloid figures made up of small cylinders (as shown in the figure

of On Conoids a_wl Spheroids, Props. 21, 22) whose axes lie along

the axis of the segment and divide it into any number of equal

parts. If c L_ the length of the axis A D of the segment, and if

there are n cylinders in the circumscril_)d figure and their axes are

each of length h, so that c = nh, Archimedes proves that

cylinder C E _ n_h
(1) inscribed fig. h+ 2h+3h+ .. _-(n- 1)h

> 2, by the Lemma,

cylinder C E n% __ __
and (2) circumscribed fig. -: ]_+-2h + 31_+... + nh

<2.

k2
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Meantime it has been proved [Props. 19, 20] that, by increasing
n sufficiently, the inscribed and circumscribed figure can be made

to differ by less than any assignable volume. It is accordingly
concluded and proved by the usual rigorous method that

(cylinder CE) = 2 (segment),

so that (segment A/_C) = _ (cone ABC).

The proof k_ therefore equivalent to the assertion, that if h is

indefinitely diminished and n indefinitely increased, while nh remains

equal to c,
limit of h {h + 2h- 3h + ... + (n- l)h} = _c_;

that is, in our notation,

o xdx :-- _c2.

Thus the method is essentially the same a_ ours when we

express the volume of the segment of the parubeloid in the form

f y'd.r,
.0

where _ is a constant, which does not appear in Archimedes' result

for the reason that he does not give the actual content of the

segment of the parabeloid but only the ratio which it bears to _he
circumscribed cylinder.

5. Volume of a s_.ment of a hyperbolold of revolution.

The first step in this case is to prove [On Conoids and Spheroids,
Prop. 2] that, if there be a series of n terms,

ah + h', a. 2h + (2h):, a. 3h ,- (3h) 2, ... a. nh + (nh) -°,

and if (ah + Y) + {a. 2h + (2],)'} +... + {a. n]_+ (hi,)'} = "-qn,

then n {a. nh + (nh)'}/S,, < (a + nh)]' 2 + .........(f3).

and n{a.nh+(nh)'}/_qn_l>(a+n_)/(_+ 3h))

Next [Props. 25, 26] Archimedes draws inscribed and circum-

scribed figures made up of cylinders as before (figure on p. 137), and
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proves that, if AD is divided into n equal parts of length h, so that
_th = AD, and if AA' = a, then

cylinder EB' _n {a. nh + (nh)-"}
mscmbed lagure S__,

,,['a . nh'_("
1l]1,), t,_-_),

and cylinder EB' _ n {a. nh _-(nh)"-l
circumscribed fig. S=

The conclusion, arrived at in the same manner as before, is that

_cyiinaerm;' :(_+nh) l(_ + ?).segment ABB'

This is the same a._ saying that, if nh = b, and if h be indefinitely

diminished while n is indefinitely increased,

,,, )!(olimit of n (ab + b')lS,, = (a + b .5 * '

or limitof bS. b2(a+b_-. =.
_2. \Z, O/

]Now ,._,= a (h + 2h +... + nh) - [1,'-'+ (2h)2+... 4-(nh)'},

so "that hSa = ah (h + 2h - ... + nit) - h ,rio.+ (2h),_+ .. + (nh)_}.

The limit of the last expression is what we should write as

ji"_(a._:+_) d.*',

which is equal to b: _ + ;

and Archimedes has given the equivalent of this integration.

6. Volume of a segment of a spl_roid.

Archimedes does not here give the equivalent of the integration

l_ (ax x2),

presumably because, with his method, it wou]d have required yet
another lemma corresponding to that in which the results (fl) above
are established.
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Suppose that, in the case of a segment less than half the spheroid

(figure on p. 142), AA'= a, CD= ½c, AD=b; and let AD be divided
into n equal parts of length h.

The gnomons mentioned in Props. 29, 30 are then the differences
between the rectangle cb + b2 and the successive rectangles

ch+]_ 2, c.2h+(2h)', ... c.(a-l)h+{(n 1)hl *,

and in this case we have the conclusions that (if S, be the sum of

n terms of the series representing the latter rectangles)

cylinder EB' u (cb + b'_)

inscribed figure - n (cb -_ b_)"- S_

>(c+ _ 3/'

cyhnder EZ_' n (cb + b_')

and c-ircumscribed fig. - n (cb + b_) -- S,,_

cvhnder _'_B' /(2 _b)
and in the limit " -- .... (c+b) +-

segment A_/_'

Accordingly we have the limit taken of the expression

n (d,+ b_)- S,, g,_
--n(cb+b _) , or 1-n(cb+b_) '

and the integration performed is the same as that in the case of the

hyperboloid above, with c substituted for a.

Archimedes discusses, as a separate case, the volume of half a

spheroid [Props. 27, 28]. It differs from that just given in that c
vanishes and b = .iza, so that it is necessary to find the limit of

h-"+ (2h) _+ (3/,) _+... + (nZ,)_.
_ (_*h)_

and this is done by means of a corollary to the lemma given on

pp. 107--9 [0_ Spirals, Prop. 10] which proves that

_ + (2h)' P(_,_)_> ._ (_h),,
and h_+ (2h)2 + ... + {(n- 1)h}' < in(nh) _.

The limit of course corresponds to the integral

bz"dx = ._b3.
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7. Area of a spiral.

(1) Archimedes finds the area bounded by the first complete
turn of a spiral and the initial line by means of the proposition just

quoted, viz.
h '_+ (2h)" +... + (nh) __ ._,_(nhj _,

h -_+ (2Z,)" + .... {(,_- 1 ) Z,I_< _ (_a,)_.

He proves [Props. 21, 22, 23] that a figure consisting of similar

sectors of circles can be circumscribed about any arc of a spiral such
that the area of the circumscribed figure exceeds that of the spiral

by less than any assigned area, and also that a figure of the same

kind can be inscribed such that tile area of the spiral exceeds that

of the inscribed figure by less than any assigned area. Then, lastly,

he circumscribes and inscribes figures of this kind [Prop. 24], thus
e.g. in the circumscribed figure, if there are n similar sectors, the

radii will be n lines forming an arithmetical progremsion, as h, 2h,
3h, ... nh, and nh will be equal to a, where a is the length inter-

cepted on the initial line by the spiral at the end of the first turn.

Since, then, similar sectors are to one another as the square of their
radii, and n times the sector of radius nh or a is equal 'to the circle

with the same radius, the first of the above formulae proves that

(circumscribed fig.) > ½rra'.

A similar procedure for the inscribed figure leads, by the use of the
second formula, to the result that

(inscribed fig.) < ½,ra2.

The conclusion, arrived at in the usual manner, is that

(area of spiral) = ._Tra";

and the proof is equivalent to takiug the limit of

-_It;-+(2/,)_+ ... + I(_- 1)h},]

or of ? [h: + (2h)"- +... + {(n - 1) h}_],

which last limit we should express as

_Fx_d_- _a _
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lit is clear that this method of proof equally gives the area

bounded by the spiral and any radius vector of length b not being

greater than a ; for we have only to substitute _rb/a for % and to
remember that in this case nh = b. We thus obtain for the area

a x_dx, or ._:rbS/a.]

(2) To find the area bounded by an are on any turn of the
spiral (not being greater than a complete turn) and the radii

vectores to its extremities, of len_hs b and c say, where c>b,

Archimedes uses the proposition that, if there be an arithmetic
progression consisting of the terms

b, b+h, b+2h, ... b+(_-l)h,

andif S,-b_+(b+h)_+(b+2lQ'_...+{b+(n-1)hl "-,

then (n-- l){b+(n-1)hl_ {b + (n- 1)]_I2
x_-b" <{b+(,_-l)1,}b l(-,_-l)l,l_'

and (n-1){b+(n-1)hl 2__ > _ {b + (u-1) h}'
S,,__ lb+(n-1)]i}b+} lb_- Dh} _"

[Ou Spirals, Prop. 11 and note.]
Then in Prop. 26 he circumscribes and inscribes figures consisting

of similar sectors of circles, as before. There are n--1 sectors in

each figure and therefore n radii altogether, including both b and c,

so that we can take them to be the terms of the arithmetic progres-
sion given above, where {b+(n-1)h}=c. It is thus proved, by

means of the abo, e inequalities, that

sector OB'C {b + (n - 1) h}_ sector OB'C

circumscribed fig. < lb+(n-1)h}b+}l(n-l)h} _< inscr, fig.-;

and it is concluded after the usual manner that

sector OB'C {b + (n - 1)h} _

spiral OBG' {b+(n-1)h}b+_{(n-1)h} 2

cb + _ (c - b):"

Remembering that n-1 = (c-b)/h, we see that the result is the
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same thing as proving that, in the limit, when n becomes indefinitely
great and h indefinitely small, while b + (n - 1) h = c,

limit of h [b_+ (b + h) _ ..... {b + (n - 2) h}_]

= (c- b){cb+_ (c- b)'}

that is, with our notation,

ff = _ (X - b').
x:a_c

b

(3) Archimedes works out separately [Prop. 25], by exactly
the same method, the particular case where the area is that described

in any one complete turn of the spiral beginning from the initial
line. This is equivalent to substituting (n- l) a for b and na for c,
where a is the radius vector to the end of the first complete turn of

tile spiral.
It will be observed that Archimedes does not use the result

correspending to

/0 t'x' dx - x_-dx = .z_dx.
7b .0

8. A tea of a parabolic segment.

Of the _wo solutions which Archinmdes gives of the problem of

squaring a parabolic segment, it is the mechanical solution which
gives the equivalent of a genuine integration. In Props. 14, 15 of

the Quadrature ¢f the. Parabola it is proved that, of two figures

inscribed and circumscribed to the segment and consisting in each

case of trapezia whose parallel sides are diameters of the parabola,

the inscribed figure is less, and the cireumscmbed figure greater,
than one-third of a certain triangle (£qQ in the figure on p. 242).

Then in Prop. 16 we have the usual process which is equivalent to

taking the limit when the trapezia become infinite in nmnber and

their breadth infinitely small, and it is proved that

(area of segment) - _/x EqQ.

The result is the equivalent of using the equation of the parabola

referred to Qq as axis of x and the diameter through Q as axis of

y, viz.
py =x (2a- z),

which can, as shown on p. 236, be obtained from Prop. 4, and finding

_ydx,
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where y has the value in terms of x given by the equation ; and of
courso

. 4a '_

1- =p J0

The equivalence of the method to an integration can also be

seen thus. It is proved in Prop. 16 (see figure on p. 244) that, if
qE be divided into n equal parts and the construction of the

proposition be made, Qq is divided at 01, 00, ... int_ the same

number of equal parts. The area of the circumscribed figure is then
easily seen to be. the sum of the areas of the triangles

QqF, QR, F,, Q.R,F._, ...

that is, of the areas of the triangles

(2_F, qoJG (do:z),,...
Suppose now that the area of the triangle QqF is denoted by A, and
it follows that

(circumscribed fig.) = A (1,-_ (n-u.__l)'_+(_n-_)_'-'n. +" '+ ,_]}

I

= n_a2. A {a"+ 2_-x" + ... + n:a-"_,.

Similarly we obtain
1

(inscribed fig.) = _. A {A2+ 2_.A_+.. * (n - 1 )-"A'-'}.

Taking the limit we have, if A denote the area of the triang!e .EqQ,
so that A = hA,

l fx(a_ of s%ment)= 7A2 .]o A"-dA

If the conclusion be regarded in this manner, the integration is

the same as that which corresponds to Archimedes' squaring of the
spiral.



CHAPTER VIII.

THE TERMINOLOGY OF ARCHIMEDES.

So far as the language of Archimedes is that of Greek geometry
in general, it must necessarily have much in common with that of

Euclid and Apollonius, and it is therefore inevitable that the

present chapter should repeat many of the explanations of terms of

general application which I have already given in the corresponding
chapter of my edition of Apollonius' Conics*. But I think it will

be best to make this chapter so far as possible complete and self-

contained, even at the cost of some slight repetition, which will

however be relieved (1) by tile fact that all the particular phrases

quoted by way of illustration will be taken from the text of
Archimedes instead of Apollonius, and (2) by the addition of a large

amount of entirely different matter correqponding to the great

variety of subjects dealt with by Archimedes as compared with the
limitation of the work of Apollonius to the one subject of conics.

One element of difficult)" in the present case arises out of the
circumstance that, whereas Archimedes wrote in the Doric dialect,

the original language has been in some books completely, and in others

partially, transformed into the ordinary dialect of Greek. Uni-

formity of dialect cannot therefore be preserved in the quotations
about to be maple; but I have thought it best, when explaining

single words, to use the ordinary form, and, when illustrating their

use by quoting phra._es or sentences, to give the latter as they appear

in Heiberg's text, whether in Doric or Attic in the particular case.
Lest the casual reader should imagine the paroxytone words e$O_t'at,

_ta_rpot, r_o'c[rat_ _rEtroil._at, _acrc[rat_ _t_'ctvTat, _rTETat_ KaXE&_a_

K¢_r0at and the like to be misprints, I add that the quotations in

Doric from Heiberg's text have the unfamiliar Doric accents.

I shall again follow the plan of grouping the various technical

* Apollonius of Perga, pp. clvii--elxx.
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terms under certain general headings, which will enable the Greek

term corresponding to each expression in the ordinary mathematical

phraseology of the present day to be readily traced wherever such
a Greek equivalent exists.

Points and lines.

A point is aTl_dov, the point B v5 B _r_lVdov or rb B simply ; a

point on (a line or curve) o-q/_ov _r( (with gen.) or & ; a point

raised above (a plane) o-q/z_ov /z_'dwpov; an:/ two points whatever
being ta]cen _o (r_lZ_[wv Xa/zflavo/x_,(uv dTrot_vo_v.

At a point (e.g. of an angle) vp&; (with dat.), Aavlng its vertex at

the centre <>jrthe spl_ere xopv_v _Xo_v wpS_ r_ x_vrp_" _ a_a[pa_ ; of

lines meeting in a point, touching or dividing at a point, etc., Kurd
(with acc.), thus AE is bisected at Z is d AE $[Xa rq_v&a_ _ard r5 Z ;

of a point falling _m or being placed on another Dr( or _arc_ (with

ace.), thus Z will fall on F, vb /_v Z _Tr'Lr5 F _rc(TdraL, so that E lies
on A, 7_o'rcrb t_v E ,card. rb A _chrOa,.

:Particular points are extremity _r_oa% vertex _oov¢_ , centre

xd_rpov, point of division _a[p¢(rt_, point of meeting o_rr_, point

of section ro/_, point of bisection $_Xoro/x[a, the middle point rb
i_(rov ; the points of di_qsion H, I, K, rd _,_v _m_p_r[o_v aaF._a rh H,

I, K i let B be its middle point _rrov 8_ a_r_ _(rrw v_ B ; the point of

section in which (a circle) cuts d ro/zd, _aO" t_v rl/zwt.

A line is 7palztz_, a curved line _alZ_r_h_ T#atzlZ_, a straight line

_0_;a with or without Tpal_l_. The straight line OIKA, d OIKA
(d0(_a ; but sometimes the older expression is used, the straight line

on which (i_rl with gen. or dat. of the pronoun) are placed certain

letters, thus let it be the straight litre M, g(rr(o _d_' _, rb M, other
straight lines K, A, _ha_ Tpalz/za[, _4O" _tv rd K, A. The straight

lines between the points a[ Iztra_ rC_v (rvliz¢_tov_Odat, of the lines
which have the same extremities the straight line is the least r_v vd

a6r,_ w_para _xowr_v _/palzp_v _)uaX[(rr_lv[[va_ _'_v ¢_9_av, straight lines
cutti_uj one anotl_" _O_&_ r[p_vod(rae _kAdAa_.

For points in relation to lines we have such expressions as the

following : the points F, 0, M are on a straight llne _w' _Oega, _o'r;

vh I', ®, M aa/_¢_a, the point of bisectim_ of the straight line containing

the centres of the middle magnitudes d _XOrO/_'a r_ e_O¢(ag _

_XO(_o'a__h x_rpa r_v Iz&(av Iz(y_O_o_v. A very characteristic phrase
for at a point which divSdes the straight line in such a proportion

that.., is _r_ ra_ _0_t'a_ $ta_o_Od(ra_ _o-r¢...; similarly _r[ r_s XE



r

THE TERMINOLOGY OF ARCHIMEDES. clvii

"ozaOdtra_ o_r¢o¢,_wrE. A certain point will be on the straight line...
dwidi_g it so that.., hradra_ _Tr'__a_ _bOda_ .._tatp_ov o_rto_ 7"_tV

dp'ql_vav c_OcTav, _o-rc ....

The middle point of a line is often elegantly denoted by an

adjective in agreement ; thus at the middle point of the segment _r't
/z_ov to9 rlxdtzaro% (a line) drawn fro,t r to the middle point of

EB, _Trbro_ P br[ I_o'av "rhv EB _XOdaa, drawn to the middle point of

the base _rr'tI_o'av "rhv fldatv dyo_.iva.

A straight line produced is the (straig]_t line) in the same straight
line. urlth it _ L'r" c_Oc&_ abr_. I_ the same straight line with the

axis iv[ ra_ abra_ _8da¢ r_ g_eow. Of a straight line falling on

another line Kard (with gen.) is use(t, e.g. lriv'cov(rt Kar' a_r_g, d_r[

(with acc.) is also used of a straight line placed on another, thus /f

EH be placed o_ BA, r_Odo'a¢ r?t_ EH drr'trhv BA.

For lines passing through points we find vhe following ex-

pressions : will pass throngh N, _c_ St_ 7"09N ; will pas._ through the
centre _'& r,,_ _vrpov _rop_(o'_rat, will fall through (.) r_drat _ta to9

O, ver qing towards B ve¢ovo'a _rr'_rb B, pass throeegh the same point

dr't rb at',rb o'atxt_ov dpXdvrat, the diagonals of the parallelogram f(dl

(i.e. meet) at ®, xarh $_ vb (") a[ _tal_&pot "ro_ rrapa)_X_l)_oypdFFou

rr[wrovrt ; EZ (passes) throufl_ the ])oiuts bisecting AB, FA, d_r[ 8_ ray

_tXOrOlZ[avr_.v AB, FA _ EZ. The verb d/z; _s also used of passzn,q

For lines in relation to other lines we have perperulicular to

_d0¢ro_ _rr[ (with acc.), parallel to 7rapd)t3al)to_ with dat. or vapd

(with acc.); /et KA be (drawn)from K parallel to FA, a,r5 to; K

_rapd rhv FA _a'ro_(_ KA.

Lines meeting o_e another (rvtx_r[wrov_a, _hA_hat_ ; the poigtt in
which ZH, MN produced meet one another and AF, vb q_//_2ov, xa0" 3

o-vlzfldAXovo'tv _fla.XA6F_vat a[ ZH, MN d.k_Aat_ r_ xa'_ _'_ AF ; so as
to meet the tangent _ar_ il_r_o'dv v_ _mtpavodcrg, let straight lines be

draurn paralld to AF to meet the section of tlre cone _XOo_v_bOe&t

_raph "rhv AP _a'r_ _-or_ "_hvto9 _dvov volzdv, to draw a straight line to

meet it4_ circumfere_we _ror[ rhv r_p_ck_pctav a_ro; _ro'rtflafle_v _{A_¢_av,

the llne drawn to meet _ rrqrtr_ogo'cq /et AE, AA be drawn from the

point A to meet the spiral and produced to meet the circumference of
the circle vo'rt_rt_rdv'rcov t_rb vo_ A o'atx_t'ov _ro'r_tvhv _)ktt_aa[ AE, AA
Kant • • o(xm_'rovrcov _ror't the to9 _xXov vcptdp_pttav ; until it meets @A in

O, gait xa o'vtt_r4o'r3 _7 @A _arh _b O (of a circle).
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(The straight line) will fall outside (i.e. will extend beyond) P,

_Kvh; vo_ P _rccE?vat ; will fall within the. section of the .figure _b_

_r(qo(l_'rat T_t_ 709 o'X_ftaro_ _'O],t_q.

The (perTendicular) distance between (two parallel lines) AZ, BH,

vb St_(rwqlza 7_w AZ, BH. Other ways of expressing distances are the
following: the magnitudes equidista_t from the _dddle one vh [(rov

dwixovra dYrb vo9 /z_rov I_T_Oca, are at equal distances from one
another I(ra _t_r" dh)tdXmu $do'raxcv ; tlve segments (le_gths) on AH

equal to N, .rh iv v_ AH r_dtmra iaot_c'y_O_a T_ N; greater by one
segment _v'_ vlzdlzart pe_u.

The word _Sda itself is also often used in the sense of distance ;

cf. the terms 7rpdrq ffi0da etc. in the book On Spirals, also cl c_Oda

/xcTa_b "to9 K_wpov "ro_ _Mov Ka't _o_ _pov "r_ ya_ the dista_ce
between the centre of the sun and the ccatre of the earth.

The word for jo/n is Ira_vyv¢¢o or Irrt_(_yvvl_t ; the straight li_e

joining the points of contact _ rh; _qbh_ i_rt_vyr_Jov(ra _Oda, BA when
joined 5 BA _m_vxOdo-a ; let EZ join the poiMs of bisection of AA,

BF, _ _ EZ _vr_v./vv&o_ "_h_StXOVO/_a_ v_u AA, BF. In one case

the word seems to be. used in the sense of drawing simply, d _a

Angles.

An angle is -/_via, the three kinds of angles are right _p_,_, acute
_a, obtuse _/_fl)tda; right-angled etc. _pOoy_'_vto_,_vyoJvto_, d/_flXv-

ydvto_ ; equiangular iaoyc_vto_ ; _-ith an even number of angles

dpr_d]_o_vo_ or _prtoTdvto_.
At right angles to JpOb_ _rpJ¢ (with ace.) or _rpb_ JpOd¢ (with dat.

follo_'ing); thus if a llwe be erected at right angles to the plane ypa_tga_
dv_crratco(_aa_ _pO_t¢_'or'_ "rb_Yr/_'.¢$ov,the pla_ws are at right angles to

one another 3pO_ _ror" _khahd _;.rt vk _r[we3a, being at right angles

to ABr, vp5_ _pOh_ _ "_ ABF; KF, =-.A are at right angles to one
anothe'r ¢rov' 3pOd_ _rrt dk)tdkax_ al Kr, _A, to cut at right angles

Tg/_u[tu _rpb_ 3pOd_. The expression making right angles with is also

used, e.g. 3p0_ _roto_ra y_v&_ _r(rr'¢"_hv AB.
The complete expression for the angle contained by the lines AH,

AF is _ y_t'a _ _r_pt_xol_a' vrro"" _'_u AH, AF ; but there are a great

variety of shorter expressions, ycov_a itself being often understood ;

thus the angl_s A, E, A, B, a't A, E, A, B T_v[at ", the angle at ®, _ :ror_

• _ O; the. angle contained by AA, ,xZ, h y_vla _ brr5 _v A_, _Z ; the
angle AHF, _ _rb r,_ AHF you[a, _ b_rbAHI' (with or without y_u&).
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Making the angle K e_ual to the angle ®, 7wv[av 1tom'era r_v K

_rav r_ ® ; the angle into which the sun fits and which has its vertex

at the eye ToJvla, (i_ _v 5 _t,o_ _vappd_** rhv Kopvd_v _Xovqav vor't T_,

_¢c¢; of the. sides subteTMing the right angle (hypotenuses) 7Ev _7r5

r_tv _pO_v 7cov&v _'o'r_wova_v, they subtend the same angle _v_i _w5

vhv a_rhv 7_ov_v.

If a line through aa angular point of a polygon divides it

exactly symmetrically, the opposite angles of the polggon, a[ dwcvaw[ov

Tc_vgtu ":o_ 7ro)u_Jvov, are those answering to each other on each side

of the bisecting line.

Planes and plane figures.

A plane _rSrdov; tl_e plane tlo'ough BA, _b _Tr_TrESov "rb Ka_h

r;lV BA, or rb 3t_ r-_ BA, plane of the base bzr[w_3ov "r'_ fldtrc_, plane

(i.e. base) of the cylinder &[_r_$ov ¢o_ _vk[vSpov ; cutting pla_e &l-

•r_3ov r_/_vov, tangent plane &lr._ov _Trtt_a_)ov; the intersection of

planes is their com_rwn section _otv_} -rolx_.

In the same plane as the circle _v _'_ a_r_ _rrt_r_$_ r_ _r:_h_.

Let a plane be erected on IIZ at right angles to the. plane in which
AB, rA are drr5 v_ IIZ _Tr[w_3ov dv[tr_tt_'to dpObv vor't r5 _rc[_r_3ov r6,

_v ,__rrta[ AB, FA.

The plane surface _ _rbr_8o_ (_rtdpdw_a), a plane segment &_r_8ov

rlz_l_a, a pIane figure (rX_lza _r_'dov.

A rectilineal fi.Ture _Od$patzlzov ((rX_l_a), a side _rMvpd, perimeter

v_p[/z_'po_, similar g/zoto_, similarly situated 5/_o/_; _dtc(vo_.

To coincide with (when one figure is applied to another),

_¢apt_6_Lv followed by the dative or &[ (with ace.); one part

coincides with the other _bapl_d_t r6 [r_pov bt_po_ br'_ _'6 _r_pov ; the

plane through NZ coi_wides with the plane through AP, ¢b &bre$ov v5

,,arh ray _z _¢_p_d_e v_ _rt,_ r_ xarh rhv At. The passive is

also used ; if equal and similar plane figures coincide with one a_u_ther

r_v _o'mv _a't 5tzo[<ov o'x'qtxdro_v _rt_'_ov _apFo_ol.t_vcov _r"t_hha_ta.

Triangles.

A triangle is rpZ_ovov, the triangles bounded by (their _hree

sides) rh r,pt¢x_tzcva rpt_cova _w_ r_v .... A right-angled triangle

rpt_o_vov dpOoyoJvtov, one of the sides about the right angle pla rdv rc,pl

_v dpO_v. The triangle through tl_ axis (of a cone) r5 &A ro_ g_ovo_

_'piTo_vov.

/

?
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Quadrilaterals.

A quadrilateral is a four-sided figure (TcrpdTrX_vpov) as dis °

tinguished from a four-angled figure, _rpdyovov, which means a
square. A trapezium, "rpaTr_mv, is in one place more precisely

described as a trapezium having its two ,ides parallel "rpaTrd_Lov"rh,

_o _Xcvph_ _Xov _ap_XX_Xov_ _XXdAae_.
A parallelogram _rapahAvlX57palH_OV;for a para]]e]oga_m on a

straight line as base _Tr_(with gen.) is used, thus the parallelograms

on them are of equal l_,ight &rr'tv _cro{_@q"rh _rapo)_TX_pat_l_a "r&&"
a3*Gv. A diagonal of a parallelogram is _tdtzcrpo,, the opposite sides

of the parallelogram a[ Ka_ _vav'r_ov _'o9_rapaAk_XoTpStzl_ov 7rXcvpa[.

Rectangles.

The word generally used for a rectang_ is X_p_ov (space or area)

without any further description. As in the case of angles, the

rectangles contained by straight lines are generally expressed more
shortly than by the phrase "rh _r[pecX6l_cva XCOp[a_r(_ ; either X_op[ov

may be omitted or both XOp_ov and _r_pe_Xdt_vov, thus tlw_ rectangle

AF, FE may be any of the following, _5 _r5 "rGv AF, I'E, "r5 t'.r.5
Ar, rE, "r5 dr5 ALOE,and the rectangle under OK, AH is "r5 d_r5 _

OK _a_ r_ AH. Rectangles ®, I, K, A, Xo_p[a _ o_ "rh (or _b' _v

_o_'rov r_v) O, I, K, A.

To apply a rectangle to a straight line (in the technical sense) is

_rapafld)_k_v, and _rapa_r_ro_ is generally used in place of the passive,
the participle 7_apa_l_¢vo_ is also used in the sense of applied to. In

each case applying to a straight line is expressed by _rapd (with ace.).

Examples are, areas wlHch we can apply to a given straight line (i.e.

which we can transform into a rectangle of the same area) X_p&,
3vvdt_Oa _rap_ "rhv _oO_(rav _O_av _rapaflaX_;v, let a rectangle be

applied to each of them _rapa_re_'vo_K_rmvrap" _do'rav a_rr_v Xo_p[ov;

if there be applied to each of them a rectangle exceeding by a square

fuyure, and the sides of the excesses exceed each other by a_t equal

amount (i e. form an arithmetical progression) _ _a _rap" _do'rau
• ^ t • _ •

awav _rapar_rT1 "re Xcoptov vw_p_ov {[Set v_'rpaTdvm, _O_V'rt$_ a[

=x_v_'_ "r6v _r_pflX_,A'rcov r_ _¢_ aXhdXav _r_pe_oi_a_.
The rectangle applied is _rapdflX_llxa.

A square is r¢r#dy_vov, a square on a straight line is a square

(erected) from it (a_r6). The square on F_-, "r5a_r5 ra_ r =_ "r_'rpdT,ovov,
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is shortened into _-5 ¢LTr5r_ 1"_, or r5 &v5 r_, simply. The square

qleXt in order to it (when there are a number of squares in a row) is

With reference to squares, a most important part is played by

the word 3(_vat,_ and the various parts of the verb 33vatta,. 36va/z,_
expresses a square (literally a power) ; thus in Diophantus it is used

throughout as the technical term for the square of the unknown

quantity in an algebraical equation, i.e. for x _. In geometrical
language it is the dative singular 3vvglz_ which is mostly used;

thus a straight line is said to be potentially equal, $wKl_ct [_a, to a

certain rectangle where the meaning is that the square on the straight
line is equal to the rectangle _ similarly for the sqnare on BA /s less

than double the square on AK we have _ BA _hd(rcroJv_(rr'_v_ _tTrka(rt_v

$wdlzct r_¢ AK. The verb $_va(rOat (with or without [qov) has the
sense of being 3vvdl_t _qa, and, when _vao'Oat is used alone, it is

followed by the accusative; thus the square (on a straigld line) is
equal to the rectangle contained by... is (eb0cTa) [o,ov _ivarat v_

r:qn_XOlZ_w" wr.o..."' _" let the square on the radius be equal to the
rectangle BA, AZ, _ _x ro_ _vrpov _vvdcrO_ r5 _r5 r_v BAZ, (the

di_'erenee) by which the square on ZF /s greater than the square on

half the other diameter _ F_7_ov _vvd_'at fi ZF _ ¢ll_qda; "_ _r_pa_
3_alzlrpov.

A gno_non is _,dt_cov, and its breadth (r,)tdro_) is the breadth of

each end ; a gnomon o.I"breadth equal to BI, _vd/_c_u_rk,dro_ gX_ov5roy

_,_ BI, (a grwmon) whose breadth is greater by one segment than the

breadth of the gnomo'_ last taken away o_ _r)_dTO__u'_"rFdl_ar_F_U_ov
ro_ _r),dr,o_ *o_ _rp5 abro_ _¢a_pov_vov 7vd_ovo_.

Polygons.

A polygon is _roXiT_vov, an equilateral polygon is lq&rX_vpov,

a polygon of an even number of sides or an.qles _pr:drrA_vpov or

dprt6T_vou ; a polygon with all its sides equal except BA, AA, _'_a_

[_ov rh_ _rh_vph_ X_pi_ r_v BAA ; a polygon with its sides, excluding
the base, equal and even in number _hg _rk_vph_ _XO_XWp'_ _ flda_

[aa_ xa'_ dpr&v_ ; an equilateral polygon the number of whose sides is

meamzred by four _-oh_y(ovov ia&rAevpov, o_ a'__rX_vpa'_b_rb _rpd$o_

i_¢rpoqv'ra_, let the number of its sides be measured by four rd vk_Oo_
r_v rrhevpSv F_rpdo'Oo_ £_rr5rcrpd3o_. A chiliagon XtAtdyo_vov.

The straight lines subtending two sides of the polygon (i.e. joining

angles next but one to each other) a'__r5 36o _rZcvt_x__'o_ _roAwdvov

n._. l
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¢rrrordvov(rat, the straight line subtending one less than half the

number of the sides ,_ i,rordvovaa _'h_ t,_, dX_ow_ r_v ,_t,{_c_v.

Ciroles.

A circle is KOx)to_,the circle _2 is 5 • K3X)to_or 5 K{K).O__v _ *b 9,

let the given circle be that drawn below _o-r_ 5 3oOc'_ _oJr)to_ 5
_o_dt-vo*.

The centre is x_v.rpov, the circumference rr_ptcbgpcta, the former

word having doubtless been suggested by something stuck in and
the latter by something, e.g. a cord stretched tight, carried round

the centre as a fixed point and describing a circle with its other

extremity. Accordingly IrEptdp_#(ta is used for a circular arc as well

as for the whole circumference ; thus the arc BA is _ BA wEpL_b_pcta,

the (part of the) circumference of the circle cut off by the same

(straight line) _ _'o9 x_xXov _r_p_dP_p(m_ _tr3 v'_ air_ drrorEFVOlX_V"q.
Though the circumference of a circle is also sometimes called its

perimeter (_ _rcp{txc_'po_) in the treatises On the Sphere and Cylinder
and on the Measurement of a Circle, the word does not seem to have

heen used by Archimedes himself in this sense ; he speaks, however,

in the Sa_]zrec]c_ner of the perimeter of the earth (w_p[F_vpo_r_ T_).

The radius is _ _ ro9 _vrpov simply, and this expression
without the article is used as a predicate as if it were one word ;

thus the circle whose radius is OE is 5 _Xo_ o_" _ ro_ K_vrpov

OE; BE is a radius of the circle _ _ BE _ vo_ _vrpov _rr'_ ro_, _Ixhov.

A diameter is 3_dFerpo_ , the circle on AE as diameter 5 _r_p'_

&d_erpov v_}vAE _'g_ko_.
For drawing a chord of a circle there is no special technical

term, but we find such phrases as the following : _dv d_ rSv _i_kov

,_Oda 7paFF _ _F_r_o'y if in a circle a straight line be placed, and the

chord is then the straight line so placed _ _Fv_o'o_'a, or quite

commonly _ _ r_ ,4x)t,_ (_#da) simply. For the chord subtevMing
one 656th part of the circumference of a circle we have the following
interesting phrase, d _rordvovcra _v _Fa _mtp(_([(ra_ _ ro_ ABF

_g_hov_P_4_P_&_ _ Xt'_-'.

A segment of a circle is r_z_Fa _6_kov ; sometimes, to distinguish

it from a segment of a sT1_re, it is called a plane segment

rF_tta _rdrr_$ov. A semicircle is _F_)uov ; a segment less than a

semicircle cut off by AB, rFfltta _ka(ro'ov _tuKv_Mov _ d_ror_lzv(_

AB. The segments on AE, EB (as bases) are rd _r_ r_3v
AE, EB rF_'l_ara; but the semicircle on ZH as diameter is vd
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_l_X(:K_ov _5 _'¢p'__erpov T_V ZH or vb _/x_x_Kkmv v3 lrcpl T_.v ZH

simply. The expression the angle of the semicircle, d ro_ _L_vKMov

(V_v/a), is used of the (right) angle contained by the diameter and
the arc (or tangent) at one extremity of it.

A sector of a circle is ro/z_ or, when it is necessary to
distinguish it from what Archimedes calls a ' solid sector,' bri_rc_o_

ro/zeb_ _5_kov a plane sector _ a circle. The sector including the

right angle (at the centre) is 5 ro/_e_ 5 vd_ _pO_v V_v&v vcp_Xwv.
Either of the radii bounding a sector is called a ._/d_.of it, _rkevpd;

each of the sectors (is) equal to the sector which lugs a slzle com_wn

(with it) _Kao_ro_v_v vo/_i_v _(ro_ r_ Kowdv _XOVr_7rkcvphv ro/z_i; a
aector is sometimes regarded as described on one of the bounding

radii as a side, thus similar sectors ]_ave been described o_ all (the

straight lines) _,a_,_Tpa_dra_ d_rd _rao'_*,_lZO[O_rolzi_.

Of polygons inscribed in or circumscribed about a circle ;T/pddp'_w

d_ or _v and w_p_yOd¢_w _r_#[ (with ace.) are used; we also find

vepff_ypa_vo_ used with the simple dative, thus T5 _rcp_7_-
"_pa_t_ov ¢r_a T_ *ro_'t is the J_gure circ_tmscribed to t]_e sector.

A polygon is said to be inscribed in a segment of a circle when
the base of the segment is one side and the other sides subtend

arcs making up the circumference; thus let a polygon be inscribed

on AF in the segme.nt ABF, _wl v-_ AF _rok_/_ovov _VT_Tpd_Ow

¢i_ v5 ABF r/_/_. A regular polygon is sa_d to be inscribed in
a sector when the two radii are two of the sides and the other sides

are all equal to one another, and a similar polygon is said to be
circ_emscribed about a sector when the equal sides are formed by the

tangents to the arc which are respectively parallel to the equal
sides of the inscribed polygon and the remaining two sides are the

bounding radii produced to meet the adjacent tangents. Of a
circle circumscribed to a polygon _r_p_)talzfl£v¢ev is also used; thus

7w6_¢vo_, as we might .say let a circzemscribed circle be drawn with
the same centre going round the polygon. Similarly the circle ABFA

containing the polygon 5 ABFA _d_ko_ _Xo)vT5 vok_covo_.
When a polygon is inscribed in a circle, the segments left over

between the sides of the polygon and the subtended arcs are

_r_p_)_¢_vrgF_a _.F_/zara; when a polygon is circumscril_d to the

circle, the spaces between the two are variously called rh _r_p¢-

_rep_k_e_/_ara or Th _rok_e_/_ava.
12
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Spheres, etc.

In connexion with a sphere (q4m_pa) a number of terms are

used on the analo_ of the older and similar terms connected _-ith

the circle. Thus the centre is x_vrpov, tile radius _ _ _o_ ,c_'#ov,
the diameter _ _pvrpo_. Two segments, _'F_lzava _ba[pa_ or

vtz_'para crq_aLp,Kd,are formed when a sphere is cut. by a plane;
a hero,There is y'/_tGrq_a_pmv; the segment of t]_e sphere at F, v5 Karh v5

F vF_tza r_ (rd_a[pa_; t]_e segment on the side of ABr, r5 dTr5 ABF

vF_lza ; the segment including the ccrcum ference BAA, v5 Kavh r_u BAA

r(pe¢_petav r/_/_a. The curved _urface of a sphere or segment
is 17r_b_vem ; thus of spherical segments bourMed by equal surfaces the

hem_phere is greatest is ro;v r_ [_ 17r_dpave[,t7rcpe_xotz_vcovaCawtK_v

_l_yl_dTcov1_(7_5v;cr_'__,_ _Ft(r_ba[p_ov. The terms base (]_dcrt_), vertex
(_opvdp_) and height (6¢oQ are also used with reference to a segmcnt

of a sphere.
Another term borrowed from the geometry of the circle is the

word sector (ro/_6_) qualified with the adjective qr_p_ (solid).

A solid sector ('_OlZ&_zr_p_6_) is defined by Archimedes as the

figure bounded by a cone which has its vertex at the centre of

a sphere and the part of the surface of the sphere within the cone.
The segment e_ the sphere included in the sector is r5 r/_a _

a_a_pa_ _5 _v _ _oF5 or _5 _arh _bv ro/z_a.

A grea_ circle of a sphere is 5 F_yecrro_ _K)tO_ _'_v _v _-_ ¢r_a[pa,

and often 5 F_?urro_ _Xo_ alone.
Let a sphere be cut by a plane not through the centre rer/z_8o_

_rCa_pa /x_/ teh vo_ x_rpov _rtw_w ; a sphere cut by a plane through

the centre in the circle EZH®, (_aTpa _r_w_$_ rerlx_l,_ I _th to5

gEw'pou gaTh _'SV EZH® _d_hov.

l>riam_ and pyramids.

A prism is _rp'_o'Fa,a I_jramid _upaF[_. As usual, dva'ypdd#e_vd_rd

is used of describing a prism or pyramid on a rectilineal figure

as base; thus let a pris,_ be described on the rectilineal figure

(as base) dvay(ypd(hO¢o d_r5 to9 d.OvTpdftt_ov _rp_rl_a, on the polygon

eircumsvribed about the circle A let a pyramid be set up d_r5 "ro; _rep'_

_'_v A _oJ*c)tov7r(p_yeypaFIz_'ov _ro)two_vov mupap_ dv_(rv_w c_vayeypal_-

F_m2. A pyramid with an equilateral base ABF is _rvpat_'_ to'&r)_evpov

_ovo'afl,hr,v r_ ABF.

The _urfaceis,a_susual,_r_¢dv(taand, when any particularface

or a base is excluded,some qualifyingphrase has to be used.
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Thus the surface of the prism consisting of the. parallelograms

(i.e. excluding the bases) _ _-,4_;.wm re9 vp&_aro_ _ Ix To;v

_rapaXX_lXo_p_l_cov (rv_Ke_/z_,'q; the surface (of a pyramid) excluding
the base or the triangle AEI _, _ _r_dwLa XOJp'_ _ fldaEo_ or _o9

AEF Tp_dJvov.
The triangles bouTMiag the pyramid "rh v[pdxovTa _plTc_va _v

7rvpalz(_a (as distinct from the base, which may be polygonal).

Cones and solid rhombi.

The Elenmnts of Euclid only introduce right cones, which are

simply called cones without the qualifying adjective. A cone is

there defined as the surface de.scribed by the revolution of a right-

angled triangle about one of the sides containing the right angle.
Archimedes does not define a cone, but generally descrihes a right

cone as an "isosceles cone (,_6vo_ io-O(rKC£_]_),though once he calls it

right (6p06_). J. H. T. Muller rightly observes that the term

isosceles applied to a cone was suggested by the analogy of the
isosceles triangle, but I doubt whether such a cone was thought of

(as he supposes) as one which could be described by making an

isosceles triangle revolve about the perpendicular from the vertex
on the base; it seems more natural to connect it with the use of

the word side (_r)_evpd) by which Archimedes designates a generator

of the cone, a right cone being thus directly regarded as a cone having
all its legs eq_al. The latter supposition would also accord better

with the term scalene cone (K_uo_ (rKak_iu6_) by which Apollonius

denotes an oblique circular cone ; such a cone could not of course

be described by the revolution of a scalene triangle. An oblique

circular cone is simply a cone for Archimedes, and he does not
define it; but, while he speaks of finding a cone with a given

vertex and passing through every point on a given 'section of an

acute-angled cone' [ellipse], he regards the finding of the cone as
being equivalent to finding the circular sections, and we may
therefore conclude that he would have defined the cone in

practically the same way as Apollonius does, namely as the surface

described by a straight line always passing through a fixed point

and mo_ing round the circumference of any circle not in the same
plane with the point.

The vertex of a cone is, as usual, Kopv_, the base fl_, the axis

_ow and the height 6_bo_; the cones are of the same height c_r'_v o_

_¢_vo__r5 r5 a_r5 _bo_. A generator is called a side (_rX_vpd) ; if a
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cone be cut by a plane meeting all the generators of the cone _ xa

K_vo__m=i8_ r_a_ av_rL%vorrL _rd_aL_ va_ ro9 Kdvov _r)_evpaT_.
The surface of the cone exclnding the base _ _md_dvcm _o9 xdvov

Xcop[_r_; flJ_,(o_ ; the conical surface between (two generators) AA, AB,
X_VLK__Tr_bdv(_a _ pera_ T_v AAB.

There is no special name for what we call a frustum of a cone

or the portion intercepted between two planes parallel to the base;
the surface of such a frustum is simply the surface of the cone

between the parallel planes _ _r@_vcea ro_ x_vov Fcra_b v_v

7rapaA)t_tc_v _Tr_w_$c_v.

A curious term is segment of a cone (_Tr_rl.eaFa _¢_vov), which is
used of the portion of any circular cone, right or oblique, cut off

towards the vertex by any plane which makes an elliptic and not a
circular section. With reference to a seg_wnt of a cone the axis

(_=_v) is defined as the straight line drawn from the vertex of the
cone to the centre of the elliptic base.

As usual, dvaypg¢_v g_rb is used of describing a cone on _ circle
as base. Similarly, a very common phrase is _Trb 709 _)_ov x_vo_

_a'ro_ let there be a co_e on the circle (as base).

A solid rhembus (_5#flo_ o-rep_g_) is the figure made up of two
cones having their base common, their vertices on opposite sides of

it, and their axes in one straight line. A rhombus made up of

isosceles cones _bl_flo_ _ h_oa_h(_v _dvo)v o-vT_(F_vo_ , and the two

cones are spoken of as the cones bounding the rhombus o_ _6vot o'_

_p,_xo_- _ _#o,,.

Cylinders.

A right cylinder is _(Aw_po_ _pO5_, and the following terms

apply to the cylinder as to the cone: base fl_(r_, one base o.r the

other _ _v_pa fl_, of which the circle AB is a base and FA opposite

to it o_ fld_r_ iz_v 5 AB _c6xko_, _r_vavTlov _ 5 FA i axis _o_v, height

6d/o_, generator _rX¢vpd. The cylindrical surface cut off by (two
generators) At, BA, _ _vo'rtFvo_ _ _v)uvSptg_ _r,_v(ea _r5 v_v At,

BA ; the surface of'the cylinder" adjacen_ to the circumference ABF,

_r,_v[_a _'o9 xv)t;vSpov _ xarh v_lv ABF _r_p,dp_p,_av denotes the

surface of the cylinder between the two generators drawn through
the extremities of the arc.

A frustum of a cylinder r(_o_ xvM'v_pov is a portion of a

cylinder intercepted between two parallel sections which are elliptic
and not circular, and the axis (_¢ov) of it is the straight line
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joining the centres of the two sections, which is in the same straight
line with the axis of the cylinder.

Conic Sections.

General terms are KCOWK_o'ro_xc_a, elements of conics, .r_ KoJv_,c(_
(the theory of) conics. Any conic section Kdvov roF_ 5_ro_ao_v.

Chords are simply c_Oc&L Iv r_ -ro_ KdVOVroF_ _7/z_vat. Archimedes
never uses the word a.vis (_v) with reference to a conic ; the axes

are with him diameters (&dFcrpo0, and $tdFcrpo_ , when it has

reference to a complete conic, is used in this sense exclusively. A

tangent is _r@aJov(ra or i_ba,'rro/_&_q(with gem).
The separate conic sections are still denoted by the old names ;

a parabola is a section of a right-angled cone _pOo_v[ov KdVOVro/z_,

a hyperbola a section of an obtuse-angled cone dFflkv-/(ov_ov Kdvov

vo_, and an ellipse a section of an acute-angled cone J_tryoJvh)v _dvov

T)ie parabola.

Only the ax/s of a complete parabola is called a diameter, and

the other diameters are simply lines parallel to the diamet_. Thus

parallel to the diameter or itse_ the diameter is _rap_ _hv $edF('rpov

a_rrh $LdFcrpo_ ; AZ i_ parallel to the diameter _ AZ vaph _'_v

_Ld/_cvpJv _o_rL. Once the term principal or original (diameter) is
used, _PX_Kd (so. _dF_rpo_ ).

A segmev_t of a parabola is rF_Fa, which is more fully described

as the segn_ent bounded by a straight line and a section of a _ight-

angled cone vl_tza _5 *rqot_XJF_vov_rr6 r_ _O_&_ _a'_ Sp_oT_v_ov_vov
vo_. The word 8edFerpo_ is again used with reference to a

segment of a parabola in the sense of our word ax/s ; Archimedes

defines the diameter of any segment as the line bisecting all the

8traight lines (chords) drawn parallel to its base rhv _xa r_Fvovtrav

rh_ _O(_a_ _rdaa_ rh_ _raph rhv fl_r_v a_ro_ _oF_va_.
The part of a parabola bmluded between two parallel chords is

called a fr_stum v_o_ (dr5 _pOoTo_vlov ,c_vov _ol_a_ dchatpoiF_vo¢ ),
the two chords are its lesser and greater base (i£gaqc0v and F[l(o,v

fldqt_) respectively, and the line joining the middle points of the

two chords is the diameter (_td/z¢rpo_) of tho frustum.

What we call the latus rectum of a parabola is in Archimedes
the line which is double of the line drawn as far as the axis 5 _,_rXaa&

• 6_/_4Xp* _o9 g_ovo_. In this expression the axn's (g_o_v) is the axis
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of the right-angled cone from which the curve was originally derived

by means of a section perpendicular to a generator*. Or, again, the

equivalent of our word parameter (_rap' _v _vv_rra_ a_ dTr5 r_ ro/z_0

is used by Archimedes as by ApeUonius, meaning the straight line
to which the rectangle which has its breadth equal to the abscissa

of a point and is equal to the square of the ordinate must be

applied as base. Tile full phrase states that the ordinates have

their squares equal to the rectar_, les applied to the line equal to N (or
the parameter) which have as their breadth the lines which they (the

ordinates) cut off from AZ (the diameter) towards the, extremity A,
Svrdrra_ vh lrap_ "fhv _ear v_ N _rapaTrl_rom'a _r)t(_ro_Ixowra , 3_ a_ra_
_Tro)taFfld,orre gTr5v3_ hZ _rov'__'5 h Trepan.

Ordinates are the lines drawn from the section to the diameter

(of the segment) parallel to the base (of the segment) a_ aTr5 r_ vo_ft_

_r'L vhv _Z _]/o_a_ 7raph rdv AE, or simply a_ dTrbr¢7_ ro/_. Once

also the regular phrase drawn ordinate-wiee wrayiz_w_ _av'qylx_ is
used to describe, an ordinate, as in Apo]lonius.

The hyperbola.

_'hat we call the asymptotes (a[ aa_/_r(oro_ in Apollonius) arc

in Archimedes the lines (approaching) nearest po the sectlon of the

obtuse-angled cone a'_ _'f_ta'ra ra_ TO; a/_flXV_COV[OV_dVOVrOt_.
The centre is not described as such, but it is the point at which

the lines nearest (to the curve) meet rb o'a/z_7ov, _aO" $ a_ _T./t(rra

This is a property of the sections of obtuse-angled cones _o_ro -/dp

The ellipse.

The major and minor axes are the greater and lesser diameters

_¢_v and _)_d_r_r_v $_d_vpo_. Let the greater diaweter be AF,

$_dlz_'po_ _ (a3rff_) _ i_v i_v _o'vco _¢" _ rh A, F. _ rectangle

contained by the diameters (axes) r5 _r[p_xd_vov _r5 _v 8m_rp_v.

One axis is called conjugate (a'v_v_) to the other: thus let the

straight line N be equal to half of the other diameter which is

co,_jzagaU to AB, _ $_ N _,_a Zqa _arw "_8_ur_i9 rZ_ _r_pa_ _,alz_.fpov,

The centre is here _v_'pov.

Cf. A_ollonius of l_erga, pp. xxiv, xxv.
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Conoids and Spheroids.

There is a remarkable similarity between the language in which
Archimedes describes the genesis of his solids of revolution and that

used by Euclid in defining the sphere. Thus Euclid says: when, the
diameter of a semicircle remainiz_! fixed, the semicircle revobJes and

returns to the same position from which it began to mm_, the included

figure is a sphere adpa_pd _o'rtv, _av _lxtKVKX[OVft_o_o_ _ _tatt_rpov

7r_pt(v(XO_V _'b _lzt_Kktov (i¢ TJ a_rb _r_t)ttv(_wotca'rao"raO_,gOcv _p_a_ro
qb_p¢crOat,¢5 7r_pt)_.yc_v o'X_lZa; and he proceeds to state that the

a._s of the sphere is the fixed straight line. about which the semicircle

o'_'p_dpcraa Compare with this e.g. Archimedes' definition of the
right-angled conoixt (paraboloid of revolution): _/a section of a

right-angled cone, vffth its diameter (axis) remaining fixed, revolves
a_l returns to the position from which it started, the fig_re included

by the section of the right_tngled cone is called a right-angled conold,

and its axi._ is defi_ted as tlte dianwter which has remai_ted fixed,

('_ra _pOo'yoJvt'ov Ko_vov "rol_ izt'vo_o'a_ _._ _tal_¢'.rpov wcpt_v(xO¢;_ra

dTrogaTa(yTaO_ 71"d}_tV,00¢iV_p_ff.O'[v, 70 "lrt_ot_ta(_O(l_o'_c_ 6_F5T_q TO_

/z;v abro9 _&v I_qztva_o_av $tdlzerpov _a3.(&Oat, and it will be seen

that the several phrases used are practically identical with those of

Euclid, except that (_pttao'cv takes the place of _pSa¢o dp_p(o'_at ; and

even the latter phrase occurs in Archimedes' description of the
genesis of the spiral later on.

The words conoid ,_vo_,_ (_X_/_a) and spheroid (rqbatpo_t_

(zX_/xa) are simply axlapted from _vo_ and (rd_a?pa, meaning that

the respective figures have the appearance (dSo_) of, or resemble,

cones and spheres ; and in this re_spect the names are perhaps more
satisfactory than paraboloid, hyperboloid and ellipsoid, which can
only be said to resemble the respective conics in a different sense.

But when _vo_tS_ is qualified by the adjective right-angled

_p0o),dvtov to denote the paraboloid of revolution, and by £t_fl)tv-
_,_vtov obtuse-ang_d to denote the hyperboloid of revolution, the

expressions are less logical, as the solids do not resemble right-

angled and obtuse-angled cones respectively; in fact, since the

angle between the asymptotes of the generating hyperbola may be
acute, a hyperboloid of revolution would in that case more resemble

an acute-angled cone. The terms right-angled and obtuse-angled
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were merely transferred to the conoids from the names for the

respective conics without any more thought of their meaning.
It is unnecessary to _ve separately the definition of each

conoid and spheroid;the phraseology is in all cases the same

as that given above for the paraboloid. But it may be remarked

that Archimedes doe.u not mention the conjugate axis of a hyperbola
or the figure obtained by causing a hyperbola to revolve about that

axis; the conjugate axis of a hyperbola first appears in Apellonius,

who was apparently the first to conceive of the two branches of a

hyperbola as one curve. Thus there is only one obtuse-angled
eonoid in Archimedes, whereas there are two kinds of spheroids

according as the revolution takes place about the greater diameter

(axis) or lesser diameter of the generating secthm of an acute.

ang/ed cone (ellipse); the spheroid is in the former cacqe oblon.r/

(_rapa/_Kc_ o'_atpoEL_) and in the latter case .fiat (_Tr_r)tarb

A special feature is, however, to be observed in the description

of the obtuse-angled co_wid (hyperboloid of revolution), namely that
the asymptotes of the hyperbola are supposed to revolve about the

axis at the same time as the curve, and Archimedes explains that

they will include an _sosceles co_ (K_vov io'oqKEk_a 7rcptXa_o(Jvrat),

which he thereupon defines as the cone enveloping the conoid
(Triplex(or v5 _oJvoc_8_). Also in a spheroid the term diameter

(&d_rpo_) is appropriated to the straight li_ drawn through

the centre at right angles to the axis (d 8_h re9 _,rpov _ro_ @Oh_

_Top_va r_ &few). The centre of a spheroid is the middle point of
the a._ Tb _&ov re9 _ovo_.

The following terms are used of all the conoids and spheroids.
The vertex (_opvdp_) is the point at which the axis meets the surface r5

aa_¢_ov, _aO"_ d_rr_ra_ 5 _o_v _ _nd?av_[a_, the spheroid having of

course two vertices. A segment (r/_Ttza) is a part cut off by a plane,
and the base (tide,s) of the segment is defined as the plane (figure)

included by tl,e section of the conoid (or xpheroid) in the cutting

plane _-__rr[w¢_ovv_ _rcpe)ta_8_v _r_ v_ to; _o_vo_t_o_ (or q_baepo¢t_o_)

vo_a_ _v r_ dwor_/_ovr_ _we_8_,. The vertex of a segment is the point

at which the tangent plane parallel to the base of the segment meets

the surface, r5 qaF_o_ , xaO' _) d_rr_'a_ T8 _r_8ov r5 _w_¢a_ov ('¢o_

_ovo_u_o_). The axis (_.o_v) of a segqnent is differently defined for

the three surfaces ; (a) in the paraboloid it is the straight line cut o_"
within tJ_e segment from the line drawn through the vertex of the
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segment parallel to the axis of the conoid _ _varroka_O_a e_Oda iv v_

rFdlZarL [{lr_ r_ dXO_[o-a_ _th "r_ xopv_ to; "rF(_Faro_ _-apa r_>v

_,ova to; K_VOELMO_,(b) in the hyperboloid it is the straight line cut
off within the segmer, t from tlw line drawn through the vertex of the

segment a_d the vertex ¢_ the cone envelopi,_j the conoid dlr5 r_

_repdXOrrO_ _5 Kcovo*tS_, (c) in the spheroid it is the part similarly

cut off from the 8traight line joining the vertices of the two segments

into which the base divides the spheroid, 5_r5 r_ e_O_&_ r_ rd_

Archimedes does not use the word centre with respect to the

hyperboloid of rc_olution, but calls the centre the vertex of t]_

envele_pi_j cone. Also the axis of a hyperboloid or a segment is
only that part of it which is within the surface. The distance

between the vertex of the hyperboloid or _egment and the vertex

of the enveloping cone is the line adjacent to the axis d _ror_ogcra

•_,_o_.
The following are miscellaneous expressions. The part inter-

cepted within the conoid _ the interseeti_a of the plan_ _ &avo-

_a_O¢_(ra _v _'_ _(.ovo_t_ "r_ 7(vo_,_va_ _'opt_ r_v _r_w_tov, (t]_ plane)
_ill have cut the spheroid through its axis r_r/_b_ _dra, _b

qOa_O0{_ _th roy a_OI,'Og, 80 that the section it makes will be a

conic, section (_rr¢ rhv "tow _rot_(r¢_ _¢Jvov roFdv , let t_v segn_nts be

cut off in any manner d_ror¢rlxdo'O¢o $io r_d/_ara d_ _XCV or by
planes dra_cT_ in any manner _wv_$ot_ &rco_o_:v dy_vot_.

I[a_ the spheroid r5 _[q_ov -to9 _rd_a_po_t_o_, half the line.

joining the vertices of the segments (of a spheroid), i.e. what we should

call a semi-diameter, fi _/_ia a_r_ rff_ _rr_¢u-/wo&ra_ rd_ _opvCh_
r_v rFaFdr_v.

_ne spiral.

We have already had, in the conoids and spheroids, instances of

the evolution of figures by the motion of curves about an axis. The
same sort of motion is used for the construction of solid figures

inscribed in and circumscribed about a sphere, a circle and an
inscribed or circumscribed polygon being made to revolve about

a diameter passing through an angular point of the polygon and

dividing it and the circle symmetrically. In this ease, in Archimedes'
phrase, the angular points of the polygon will move along the circum-

ferences of circles, a_ "yc0w'a,_arh _d_h_v _r(ptqb_p(_v _voX_q'_ro_ra, (or
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o_r_Grovral) and the sides will move on certain cones, or on the surface

of a cane _aTd T_v,_vKdwv _wX_ovra, or xar' _mCavda¢ xdvov ; and
sometimes the angular points or the points of contact of the sides of

a circumscribed polygon are said to describe circles ypddpov(re K(_KXov_.
The solid figure so fo_med is _'_ 7_-,/8_v o-rcp_Sv _)C_a, and let the

sphere by its revolution make a figure 7rcptevcXO¢_(ra_ o'¢a;pa _rote(r¢_

For the construction of the spiral, however, we have a new
element introduced, tlmt of ti_ne, and we have two different uniform

motions combined; if a straight line in a plane tur_ uniformly
about one extremity which remains fixed, and return to the posltion

from which it started and if, at the same time as the line is revolving,

a paint move at a uniform rate along the line starting from the fixed

extremltff, the poi_g will describe a spiral in the plane, c_ xa _Oda..._v

The spiral (described) in the first, second, or any turn is _ _ _ Iv

-f_ _rpdw_t, _vr_p9 , or 57ro_go6v _p_d_op_ 7,7patq_,a, and the turns
other than any particular ones are the other spi,raL_ a[ _tk,kae _he_¢_.

The distance traversed by the point along the line in any time is

_0¢_a _ _a_ffOd(_a, and the times in which the point moved over the

distances o[ Xpgvo_,_=,o_ r5 aaFdov _h_ )_palzp)a__Tropvd_?; in the time

in which the revolving line reaches AF from AB, _v _ XP6V_,_ 7r*pta]/oF_va

The origin of the spiral is dpX_ ra_ _ht_o_, the initial line _pXh rZ¢

v_t_boO_7¢. The distance described by the point along the hne in

the first complete, revolution is ¢3Oda _'pdra (first distance), that
described during the second revolution the second distance ,bOda

_wNpa_ and so on, the distances being called by the number of the

revolutions 5Fo_v_Fo__a_ _r_ptdpopa_. The first area, X_plov 7rp_rov,

is the area bounded by the spiral described i_ the first revolution and

by the 'first distance' v_ X_p&>vv5 _rcp_ad_Oh, _'(_ re vE_ _k_xo_ "*E_

T_ _rp_r 9 _r[pt_p_, ypa_(t'o'a¢ xc_tv_ t_O_t'a_, _ _o'rtv _rpv_ra; the second

area is that bounded by the spiral in the second turn and the 'second

distance,' and so on. The area added by the spiral in any turn is v5

The firgt circle, r_x)tOg 7rpt_ro% is the circle described with the

' first distance' as rsxiius and the origin a.a centre, the second circle
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that with the origin as centre and twice the 'first distance' as

radius, and so om

Together with as many times the whole of the circumfere_we of the

circle as (is repr_ented by) the number less by one than (that of)
the revolutions t_cO"gha_ v_ to9 x_hov _r_p_c_Ep_[a_TotravrdKt_ )talz-

flavoF_va_ , _o'o_ _o-r'tv _) _v't _)t_o'o'mv t_ptOp_ _r_v _r_pt_op_v, the circle
called by t]_ number corresponding to that of the revolutions 5 KdKko_

5 KaTh TOY till"bY (_ptO_tSV kE)lg_fVO¢_ ra_ vcped_opa_.

With reference to any radius vector, the side which is in the

direction of the revolution is forward rh _rpoayo6_cv=, the other

backward Th i=gt_cva.

Tangents, etc.

Though the word g_-ro/_aLis sometimes used in Archimedes of a

line touching a curve, its general meaning is not to touch but simply

to meet; e.g. the axis of a conoid or spheroid n_ets (_rr_TaL) the
surface in the vertex. (The word is also often used elsewhere than

in Archimedes of points lyi_uj on a locus ; e.g. in Pappus, p. 664, the

point will lie on a straight li_e given in position ,'_a_ "r5 o_lz_ov

To touch a curve or surface is generally idpd_rr_Oat or i_r,¢ade¢v

(with gen.). A tangent is id_a_rro/xlvv or _t_ha_:ovaa (sc. e_O_?a)and
a tangent plane _rt_agov _w[r._ov. Let tangents be drawn to the circle

ABY, _-o9ABF _kov _ba_rr_lzeva_ _XOoxrav; _f straight lines be drawn

touchircj the circles _hv dXO_?_& vtve_ _wtCalovc_ca v_v r6Kkcov. The
full phrase of touching wlt/wut cuttin[/ is sometimes found in

Archimedes; if a plane touch (any of) the conoidal figures

wit]wut cutting the co_wid _[ ca _v rwvo_t$_(_v (_X_dr_v _r[_r_ov

_¢a_rr¢lra_ i_ _'dtzvov r5 _o_vo_8;_. The simple word _had_v is

occasionally used (participially), the tangent pla_es vd _r_%*_a vh

_io_r_.
To _ouch at a point is expressed by rard (with acc.); tl_ points

at which the sides...touch (or nwet) the circle a'qlz,_a, _aO" _ _rro_at

_'o_ _(_)_ov a'_ _rAevpa(. .. Let them touch the circle at the middle

points of the circumferences cut o_" by the sides of the inscribed

polygon brt_bav_r_(rav to9 K_K_01) Ka_*_ _££o'a T_)F _p%_(DCt(_Y _'_V

a_ror¢l_VOl,[VCOV{=r5to9 _y[Tpalzl_vov_rokv_dvov_rh_vp_v.

The distinction between br_a_v and _=ro_ is well brought

out in the following sentence; but that the pla_es touching the

spheroid meet its surface at one point only we shall Trove _rt
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The point of contact _ 8._/].

Tangents drawn d_'om (a point) 8V/_wL _r6; we find also the

elliptical expression dlr_ _o_ =, _a_r_g¢o _ O=-T, let O_'l-I be the

tangentfrora ,_, where, in the particular case, =- is on the circle.

Constructions.

The richness of the Greek language in expressions for con-

structions is forcibly illustrated by the variety of words which

may be used (with different sha/des of meaning) for drawing a

line. Thus we have in the first place _y_ and the compounds

8_-/¢o (of drawing a line through a figure, with dg or _v following,
of producing a plane beyond a figure, or of drawing a line in a

plane), _avd),_ (used of drawing an ordinate down from a point on

a conic), _rpo_d'/_ (of drawing a line to meet another). As an
alternative to _rpot_dT¢o,rrpotrfld)Oto_ is _lso used; and _'pocr_rt'_rrto

may take the place of the passive of either verb. To produce is

_fld)t)to_, and the same word is also used of a plane drawn through a

point or through a straight line ; an alternative for the passive is

supplied by ;_rbrr_. Moreover _rp_o'r[tkta_ is an alternative word

for being, produced (literally being ad_v O.
In the vast majority of cases constructions are expressed by the

elegant use of the perfect imperative passive (with which may be
classed such forms as 7q, ov&o_ from 70,vop_a_, _(_r_o from dlz[, and

_&O_ from r_7/xat), or occasionally the aorist imperative passive.

The gre._t variety of the forms used will be understood from the

following specimens. Let BF be r_utde (or suIx2osed ) equal to A,

r_o'O_ _'_ A "Itrovvb BF ; let it be drawn _XOo_,let a straigl_t line be

drawq_ in it (a chord of a circle) &_XO¢o_',_ d_ a_rbv [60_;a, let KM be
drawn equal to... _a_l _a_XOto _ KM, let it be joined _w_6xOo_ , let

KA be draum to meet _rpotrfleflk_trOo_ _ KA, let them be produced

_rfl[flX_trO_av, suppose them found [bp_(rOtoqav, let a circle be set out
_r_(trO(o _ko_, let it be taken _pO_, let K, H be taken _trrtotrav

_k_llzl_at a[ K, H, let a circle _P be taken )t_(o _6rXo__v _ "r_q_,let
it be cut _'erlz_trO% let it be divided 8tatp_trO_ (8_yp_trO¢o); let one cone be

cut by a plane parallel to the base and Froduce the section EZ, _/_,/0_ro_ 5

TZ be cut off d_roX[ka'd?O__ TZ ; let (suc.h an angle) be left and let it

be NHI', kdt¢i¢O_ _a't _o"r_ _ _w5 NHF, let a figure be made ],fl, cv_trO_
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ax_Fa , let the sector be nmde _arto 7e),_qtx_vo_ 5 ro/z_, let cones be

described on the circles (as bases) dva_cvpd_Oto_rav dlrb rdv _Xtov
_¢;voL,dr5 ro_ x_)_ov xCouo__ar¢o, let it be inscribed or circumscribed

_),ye),pddpOw(or _TTeTpaFtz_vov _a.r(o), _r_pLycVpdq_Oca; let an area (equal

to that) of AB be applied to AH, rrapaflcfl)t_aO(o _rapd rhv AH r5 X(OP&v
to9 AB ; let a segment of a circle be described on OK, _r't _-_ OK

x_K)tov rlz_t_a _dp_(rrdaO¢o,let the circle be completed dvaTrcTr)t*lpd(rO¢o5

_gx)_o_, let N_ (a parallelogram) be completed crt,tz_rcrr)t_#daOoJ_5 N_.,
let it be made rreTro¢_(rO¢o,let the rest of the construction be the same as

before .rh _tAha xarccrxcvdaOw rSv a_rbv rp6,'rov ro_ lrpdr_pov. Suppose

it done 7_yov&w.

Another method is to use the passive imperative of vod(o(let it be

co_tceived). Let straight lines be conceived to be draw_ vo_laOo_rav

_O_?a_ _F_a_, let the sphere be conceived to be cut vo_,'(rO¢o_ afa?pa
r_rlzWz_u'q, _t a jTgure (generated)from the inscribed polygon be

co_ceived as inscribed in the sphere d_r5 _o9 _roXv'ydvov _o_ _pa¢o-

F_vov vo_{aOw r_ ¢_ _v o-_a_pa_, _77pa_b_v trX_/xa. Sometimes the

participle for'drawn is left out; thus d,rc" a_ro9 vodo_Oto lmfdvem let
a surface be conceived (generated)from it.

The active is much more r_rely used; but we find (I) _dv w_th

subjunctive, if we cut idv r_l_o_txev, if we draw ld, dTdTo_F_v, if you

]_oduce _dv ixflak_¢ ; (2) the participle, it is possible to inscribe..and

(ultimately) to leave _vvardv _trrtv _yypdgaovra...hd_r_w, if w_ con-
tinually circumscribe polygons, bisectinc3 the remaining circumferences

and drawing tangents, u,e shall (ultimaboly) leave d_'t 3_ r_ptypd_ovr_

7roXffywva3[Xa _FvoF_vo_v r_v rc_ptX_trroF_v¢ov7r_p_p_u xa'_ dyotx_vtov

_q_arrrotz_vcov)k¢t_/olza, it is possible, if we take the area.. , to inscribe

)_afldvra (or Aaptfldvov'ra) r5 XtOp{ov...$v_ardv _(rrw.. _7ypdtat ; (3) the
first person singular, I take two straight lines )tal_fldvo_ 31o _¢_Oe(a¢,

I took a straight line ghafldv viva ebO{_ttv; I draw OM from O parallel

to AZ, _y¢_ d_r5 ro_. ® ":dr ®M rrapd_Ao_ r_ AZ, having drawn PK
perpendicular, I cut off AK equal to FK d),ayoJ_ _dO[rov rhv FK r£

FK bray drr_aflov rdv AK, I inscribed a solid figure...and circum-

scribed another _./pat_a o'x_bta crr{Oebv. .xa_ _ho _r[pt[ypatpa.
The genitive of the passive participle is used absolutely,

_bp_O4vro_ 3_ it being supposed found, _77pa_b_ro_ 3_ (the figure)

being inscribed.

To make a .figure similar to one (and equal to another) 5Fotd_a_,

to .find earperimentally dpTav,_$_ hafldv, to cut into u_vequal Tarts d_
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Operations (addition, subtraction, etc.).

1. Addition, and sums, of mruyr,itudes.

To add is z'poo-r,'O_tz*,for the passive of which _rp6c_KeL/_a,is often
used; thus one segment being added _vb_ _t_aro_ 7rar_'eO_vro_, the

added (straigh_ line) _ Iror_xe,/L_va,let the common HA, ZF be added
Kotva'_ 7rpoo'Ke[crOc_xava[ HA, ZF; the words are generally followed

by _rp¢;; (with acc. of the thing added to), but sometimes by the
dative, that to which the axldition was m_te _ lrarer_Oy.

For being added together we have avrr[OeaOat ; thus being cuh_d

to itself avv'rtO_/_evov a_'rb _aur_,, added together _ ,r5 a_r5 o-vv'reO_wa,

addled to itself (continually) _Trurvv_'tOe_evov_avr_.
Sums are commonly expressed for two magnitudes by o'waFdpd-

vepo_ used in the following different ways ; the sum of BA, AA

o'vvaFC_repo_ _ BAh, the su_ of AF, FB o'v,,aF_adr_po_ _ AF, PB, the

sum of the area and the circle r_ o'vva/zdpg'repov g re _g_)_o_ xa'_ v5

Xwpt'ov. Again for sums in general we have such expressions as the
line which is equal to both the radii _ _ow d/,6or_pat_ va;q d_ _o_

,d_pov, the line equal to (the sum of) all the lines joining _ [a'O

wd(rat_ _'a2_ _rt_eWvvo(_rat_. Also all the circles o[ _rdwr_ Kg_)_ot

means the sum of all the circles; and a_),_va_ _ is used for is

equal to the sum of (two other magnitudes).
To denote plus tzerd (with gen.) and (rdv are used ; together with

the bases _erh r_v fldo'e_v, together with half the base of the segment

(r_ _ _lz,r_'a r_ _o9 _lz_Faro_ fldo'eo_ ; _re and _al also express the

same thing, and the participle of _rpo_),a_fld_ gives another way of
describing hay/rig something added to it; thus the squares on (all)

the lines equal to the greatest together with the square o_ the greatest...

is ._h _rpdy_va _h dr.5 ray ia3,v r_ I_&r_ worO,aFfld_ovra v_ re ,_w5

• _ Fey_a_ "revpdTo_vov....

2. Subtraction and di_erences.

To subtract .from is _dpaepe;v dw6 ; if (the rhombus) be conceived as

taken away _hv vo,qO._ dCyW1/_;vo_, let the segments be subtracted

_q_aqoe0_ro_v _'h v/_/zara. Terms common to each side in an

equation are _otvd ; the squares are common to both (sides) Ko_vd _vv_

_xar_p_v _h _'_rpdy¢ova. Then let the common area be subtracted

is _o_vbv ddZyp_o-O_ v5 Xo_piov,and so on; the remainder is denoted

by the adjective )towards,e.g. the conical surface remaining kotw_/

The difference or excess is _repox_ , or more fully the excess by
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which (one magnitude) exceeds (wnother) _r(poX_ , _ 67r_p_x_... or
_Trcpoxd, _,Fallow io'r[ .... The excess is also expressed by means of

the verb _-_p_Xcw alone ; let the differenee by which the said triangles

exceed the triangle AAF be O, _, 8_ _Trcp_xc, _'_ (lp_gdva "rp[T(ova "ro_
AAF rpt_/dvov _o'_ _'b O, to exceed by less than the excess of the cone

_I, over the half of the spheroid _Trfp['Xctv ;haler(tort _ _ (or _3.[Ky)

17rtp_xct 5 _P K_vo_ _'o9 _lzt'o'[o_ _'o9 o'dpatpoct$1o_ (where _ _rcpix(t may

also be omitted). Again the excess may be _ /z[t'_v krrt'. The

opposite to v_rtp(Xct is _.[[wt-rat (with gen.).
Equal to twice a certain excess [(ra Sva'tv _rtpoxa;_ , with which

equal to one exce._s, _(raftt_, _rcpox_, is contrasted.

The following sen_nce practically states the equivalent of an
algebraical equation; the rectangle _tnder ZH, _5 exceeds the rect-

angle under ZE, EA by the (sum of) the rectanyle co_dained by _A,

EH and the rectangle under ZE, _E, _7rcp_x_t _5 J_rb _ ZH, _A ro9
_rb r_v ZE, EA r_ _ _vb _v _A, EH wtptcXOft_v_" _a_ "r__¢rb _v ZE,

_E. Similarly twice PII togettw_r with II_ is (equal to) the sum of

_P, PH, $_o F_v a[ PH F_'5, _'o7_II_ o'vvaFdpdr_p_ _aTtv _ _PII.

3. _WultipHcation.

To multiply is _roX)taTrXa_,_o_; m_dtiply one another (of numbers)

7ro)k_ctrrXa(rt_¢tv dAAdhov_ ; to multiply by a number is expressed by

the dative ; /et A be multiplied by ® _rcwoX)_aT_XaatdaOo_5 A "r_®.
Multiplied into is sometimes _r[ (with ace.); thus the rectangle

H®, ®A i_to ®A (i.e. a solid figure) is rb _b ro3v H®, ®A d_r_
_lv @A.

4. Divisio_

To divide _tatpdv ; let it be divided into tlwee equal parts at the

points K, ®, 8t_,p_(rOm de "_p;a_aa gara _h K, ® qal_da ; to be d,_fi._ible

Proportions.

A ratio is h6_,o_, proportional is expressed by the phrase in

p_roportion c;vdkogov, and a proportion is dvakoTt'a- We find in

Archimedes some uses of the verb hIT_ which seem to throw light
on the definition found in Euclid of the relation or ratio between

two magnitudes. One passage (On Conoids and Spheroids, Prop. 1)

says if the terms similarly placed have, two and two, the same ratio

and the first magnitudes are taken in relation to some other mag-
nitudes in way ratios whatever _ _a xa_h _,o _Sv a_ov"" XdTov _XO_v'rt

H,A.
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_¢),c8_a...,v _,oTot, oTroto_ovr, if A, B... be in rdation to N, _... but
Z be not in relation to an_hin 9 (i.e. has no tmrm corresponding to

it) d xa... rh I_h, A, B,... A_7dv'rat Ir_r'L _ N, _,... *b 8_ Z t_71_

A mean proportional hetu_n is /_ dw£koTov _v..., is a mean

proportional between i_c'qov )tdyov _X(t r_...Ka't _..., two mean pro-

portionals 8_o 1_6ra_ dvd3,oTov with or without Ka,h ,b ¢rvvtxd_ in
continued proportion.

If three straight line.s be proIx)rtional _hv vp_ _OE_at _vdXoyov

_Grt, a fourth proportional Ttvdpra dvdhoTov , if four straight lines be
proportional in continued l_roportion _[ Ka _'_o'(rap(_ _palzl_al dvd_.o'fov

lo_v,, h, ,_. qvvoXd dvaXtrT@ at the point ditqding (tl_ line) in the

said proportion _a,h *hv _vdXoTov *oily *_ _o_lt_&9.

The ratio of one straight line to another is e.g. 3 r_ PA _rpS_AX

x_,o_or _ (X_o_),_ ;X_'_P_ "_P_,;_vAX; t_ ratio of the base,
._ fl_rlo,_XdTo_; has the _'atioof 5 to 2 X_o_ _x_ _ _, ,_P_
_o.

For having the same ratio as we find the following constructions.

Have the same ratio to one another as the bases ,by a_r_v _XOV,t XdTov

roy' dhXd_tov_ "_a;_ flda_crtv, as the squares on the radii _v a't _ _'_v
_vp_ov tvvdgv ; TA has to PZ the (linear) ratio which the square on

TA has to the sq_*are on H, _v gX_t h6yov _ TA _rp_, ._v tt _VVdl_%

.ogrov _X(, ,by XgTov _ TA _rp3_ PZ i_@,t. Is divided in tire saute

ratio ¢i_ *6v a_rSv XdTov _'_rt*wra_ or simply 61_o[¢o_; will divide the

diameter in the proportion of the successive odd numbers, unity

corresponding to the (part) adjacent to the vertex of the segment ,by

_tdlzerpov .,izo_r, ,_¢ vo{m _'_v _:_ _r,pto'(ro_v ZptOp._v X6Tou_, _;

To have a less (or grea_r) ratio than is l×ttv _,@ov bk,hrcrova (or
_5_ova) with the genitive of the second ratio or a phrase introduced

by _ ; to have a less ratio than the greater magnitude has to the less,

t_ttv Ad_[ov_)t_o'ova _ .d p,t_ov p._',{t_o__rpd¢ rb _ro'ov.
For duTlicate , t_iplieate etc. ratios we have the following

expressions: has the tr_licate ratio of the same ratio _pt_rha_&va

)_67ov _X¢, _o9 a_o9 XdTov, has the duplicate ratio of EA to AK

&_r)taerlora )tgTov _XCt_prtp _ EA _rp_¢ AK, are in the triplicate ratio
of the d_tym_ters _f_ the bases _ _rpt_'_.o._ovt _ (_r_ "r_V _V "to.i,;

fighter, 8mt_po_v , sesquialt_rate ratio _l_MO, h&fo_. With thee_

expressions must be, contrasted the use of double, 9uadruple etc.
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ratio in the sense of a simple multiple by 2, 4 etc., e.g. if any

number of areas be placed in order, each belnfl four times the next d

_a XO_plarcO_o_L _, 5Tro_ao_v _v r_ _Erpa_rXaaiow k_7_..

The ordinary expression for a proportion is az A is to B so is F
to A, o_ _ A _rpS_r_v B, offro_ _ F _rp3_ r_v A. Let hE be made so

that AE is to rE as the sura of ®A, AE is to AE, vEwo_0¢o, ¢J_

avvalzC_rcpo_ _ ®A, AE _rpd_ v_/v AE, o_ToJ¢ _ AE _rp_ rE. The
antecedents are rh _fyo_l_va , the consequents _'h _rro'lzeva.

For reciprocally proportional the parts of dvrt_r_wov_a are used ;

the bases are reciprocally proportional to the heighL_ dv-rt_rc_rdv_a(rtv

a[ fldcr_c_ ra_ _,_¢rtv, to be reciprocally in the same proportion

• f • $ •aw'Lwc_rov_.Iz_v_ara "rdv alrrov h or.

A ratio compounded of is h6_,o_ _v_o_ (or _/_d_vo_) _ _

_'o_..._a'_ _'o9...; the ratio of PA to AX is equal to U_at compounded of

5 _ PA vp_ AX ),_),o, o-vv_r.za, _ .... Two ether'expressions for
compounded ratios are 6 TO9 d_rd A® _r_ rd d_rd B@ _a_ 5 (or

_rpocrkafl&v rSv) _ A® _rp_ ®B, the ratio of the square on A® to

the square on B® multiphed by the ratio of A® to ®B.

The _chnical terms for transforming such a proportion as
a:b=c:d _re as follows:

1. _vaLkd_ alternately (usually called perrautando or alternando)
means transforming the proportion into a : c : b : d.

2. d_&rak,v reversely (usually invertendo), b : a = d : c.

3. o_SvO_q,__yov is composition of a ratio by which the ratio
a:b becomes a + b:b. The corresponding Greek term to com-

po_ndo is o_v0h, r_, which mcans no doubt literally "to one who

has compounded," i.e. "if we compound," the ratios. Thus o'vvO_wr_

denotes the inference that a + b : b : c + d : d. _arh ._vO_(r_v is also

used in the same sense by Archimedes.

4. $m(p_ ),_ov signifies the divixion of a ratio in the sense of
separation or subtraction by which a : b becomes a -- b : b. Similarly

$_AJvr_ (or _avd _mg#[(rtv) denotes the inference that a- b:b =
c-d:d. The translation dividend® is therefore somewhat mis-

leading.

5. dvao'rpodp_! k_ov conversion of a ratio and dvao"rp_.t_al,'rt

correspond respectively to the ratio a : a- b and to the inference
that a : a-b=c : c-d.
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6. &" _rov ex aequali (so. distan_ia) is applied e.g. to the

inference from the proportions

a:b :c :detc.=A :_: C:Detc.

that a : d--A : D.

When this dividing-out of ratios takes place between proportions
with corr_ponding terms placed crosswise, it is described as _L' _(rov

_u _ revapa_/z_,_ alva)toT,(_ ex aequali in disturbed proportion or

_vo_o[o_; "r(_vh_/o_v _ray/z_vc_v the ratios being dissimilaxly placed;
this is the case e.g. when we have two proportions

a:b=B:C,

b:c=A :]3,

and we infer that a : c = A : C.

Arithmetical terms.

Whole multiples of any magnitude are generally descri_ as the
double of, the triple of etc., 6 _Trkd_to_, 5 rptTrkd(r_o_K.r.X., following

the gender of the particular magnitude; thus the (sub:face which iz)

four times the greatest circle in the sphere _ rcwa_rha(r_a "to_ /xc_[_rov
Kt_kov _'_v _v r;3 (_a[p9 ; five times the sum of AB, BE together with

ten tlrnes the sum of FB, BA, d w_a_r)_a(r[a _rwa/zdpov_oov r,7_ AB, BE

tzvrh "M_ 3cxaw)ta(_{a_ o_a/_c_ov_pov _ FB, BA. The same multiple
a_ .roo'airra'n'l_r_o_v...5o-av_.ao'[_ov _aT[_ or _(r_Kt_"n'o_._o.v_.aOe[iov. Ka[.

The general word for a multiple of is _rokka_rkd_no_ or _ro_a_r_.a(r[mv,

which may be qualified by any expression denoting the number of
times multiplied ; thus multiplied by the same number voh_aw)t_to_

r_, ai'r_ _o_, multiples according to the successive numbers

_ro_a_r_ta _arh vo_ _ dpt_t_oi_.
Another method is to use the adverbml forms twice _[_, thrice

vp[v, etc., which are either followed by the nominative, e.g. twice EA

8_ _ EA, Or constructed with a participle, e.g. twice taken 8"t_ ka/z-

t_avgt_tvo,;or 8;_ dP_ll_Vo_ ; together with twi_ the whole circumference

of the circle t_ ' $)ta_ r_ ro_ K_KhOVv_p_a_p_&_ $'_ Xa/_f_avo/_va_.

Similarly the same number of times (the said cireumfirevwe) as is

extrressed by the number one less than (that of) the revolutions
ToffaWrdKtg _at_avolz_va_ , _o'o_ _O'71V6 _V_ _)tdo'amv 4ptOp_ _'_V

_r_mp_v. An interesting phrase is the following, as many times as

the 5he _A is ean$ained (literally added together) in AA, so many times

let the time ZH be contained in the time AH, &rd_ (rvy_dra_ _ I_A
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Tpa/zp_ iv r_ AA, rocratrrdre_ wv..fKc[o-eo_5 Xp6vo_ 5 ZH iv r_ Xp_v? v_
AH.

Submultiples are denoted by the ordinal number followed by
izc'po_; one-seventh is _fl$opov/_po_ and so on, one-half being however

_pw-v_. When the denominator is a large number, a circumlocutory

phrase is used; thus less than T]-_th part of a right angle iXdrr_v

When the numerator of a fraction is not unity, it is expressed

by the ordinal number, and the denominator by a compound

substantive denoting such and such a submultiple; e.g. two-thirds
_do l"ptra/z6pta_ three-fifths rp[a 7r_/z_rrap_pta.

There are two improper fractions which have special names,

thus one-and-a-ha/f of is _Fdhm% one-and-a-third of _w(rD_rog.

Where a number is partly integral and partly fractional, the integer

is first stated and the fraction follows introduced by ra_ _rt or _a(
and besides. The phra._es used to express the fact that the cir-

cumfere_we of a circle is less than 3_ but greater than 3_° tinws its

diameter deserve special notice; (1) wav'rb_ r_Khov _ Ircp(t_vrpo_ _

also have the phrase for the first part t),da_r=v _ rpar)tao'¢_v _a'_

To _r_/_pdv, common m.e_'ure _owb_/_pov, comn_n._ur_le,

Mechanical terms.

Jfedtanics rh _yXaVt_d, weight fldpo_ ; centre o] gravity K_rpov

ro_, fldp_o_ with another genitive of the body or magnitude ; in the
plural we have either r& K_v'rpa a_'_v ro_ fldp(o¢; or r_ r_rrpa rGv

flap_=v. _vrpov is also used alone.

A lever _t./d_ or _(,/tou, the horizon 5 6p[_o)v ; in a vertical line is

represented by perpendicularly _arh xdO_rov, thus the point of
suspension and the centre of gravity of the body suspended are in a

vertical li_ xar_ xdOcrdv _a'rt r_ _'( aalz(_ov to9 Kp(Faarov ral rb

x_._pov *o_ fldp_o_ *o_ rp*p,at_vov. Of suspension from or a_ ir or

xavd (with ace.) is used. Let the triangle be suspended from the
points B, P, xpq_d_O_ _& rp_-/o_vovb_ rGv B, C (ra_d_v ; if the

suspe_ion of the triangle BAF at B, F be set free, and it be suspended
at E, the triangle remains in its position e_ xa _o9 BAF Tptydvov
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To incline towards #_'_-(tviw[ (ace.); to be in equilibrium
lqopfltrtr(_v, they will be in equilibrium with A held fast xa,¢xoFdvov

I"o9 A hroppo_o'_b they will be in equilibrium at A (i.e. will balance

about A) xa,_, T5 A hroppo,r_lo-ogrrt ; AB ic too great to balance F

p_Jv _o_rt _b AB _ _rTc _oppoTrE;v _. F. The adjective for in
equilibrium is hropp_, ; let it be in equilibrium with the triangle

FAH, _oppc_r_._ _o'_roJ_'_ rAH .rp,ydv_. To balance at certain
distomce, (from the point of support or the centre of gravity of a

system) is dTr6_'tvom Fax_v _(roppow(;v.

rlrheorom_, problems, etc.

A theorem O_p_lFa (from #_top_ to investigate); a problem

_r_dflh_/Va, with which the following expre_ions may be compared,

the (questions) propounded concerning the figures _& _rpo_fl)_va

•r,p't ,Gv og(qt_r*ov, these things are propounded for iave.st_ation

zrpoflahAe%at _1_ O_o_p_aat; also _rp_[tga¢ takes the place of the

passive, which it was proposed (or required) to find &r_p _rpo['x_t_o

Another similar word is _*u%ay/_a, direction or require,rwnt;

thus the theorems a_d directions necessary for the proofs of them _'&

_top_l'lCara Ka't_'_t[wtraTFaTa'' 1"_.Xp(&v {XOVl"a[_ _'_t; _wo_(t_t_* a_r_v,
in order that the requi?ement may be fulfilled _r_ 7&W_at _b _w,-

•"axOk (or _*r[_'aTFa). To satisfy the requirement is wordy ,b _rr[_'ayFa

(either e.g. of lines in a figure, or of the person solving the

problem).
After the setting out ((,0,ats) in any proposition there follows

the short statement of what it is required to prove or to do. In

the former case (that of a theorem) Archimedes uses one of three

expressions _[twr(ov/t/8 required to provG A_yo or dpaF'_$_ I assert

or say; and in the second case (that of a problem) Sd _ it is

required (to do so and so).

In a problem the ana2ysis Avd).vat_ and synthesis o-dvO¢qt, are

distinguished, the latter being generally introduced with the words

the symhesis of the prob_tn will be as follows o_weO_er_ _5
_rpdfl)t_/pa o_r_o_. The parts of the verb &,oA_tv are similarly
used ; thus the analysis a_ synthesis of each of these (problems) will

be, giVen at the end _Xd'l'tpa _ "ra_ra _t "r_.A_td*voAt_9@rero,_"r(Ka't

O'UllY((9_O'd_t.
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A notable term in connexion with problems is the 3topur/_

(de_rminatlon), which means the determination of the limits within

which a solution is possible t. If a solution is always possible, the

problem does not involve a _toptcr/xd% o15__X_t 3toptcrl_Jv; otherwise
it does involve it, _Xct _,op_l_Jr.

Data and hypotheses.

For given some part of the verb _ttt is used, generally the

participle _oOd_, but sometimes &_o/t_vo_ and once or twice StSgtL_ro_.
Let a circle be given 3_3d_0to x(_xko% given two unequal magnitudes

_o IzeIcO_v drhrtov _oOgrrtov, each of the two lines I'A, EZ is given
_(rr_tv _oO_o'a Ixar_pa rdv FA, EZ, the same ratio as the given one,

)td_o¢ 5 aCrr_ r,_ $oOgert. Similar expressions are the a_s/gned ratio

g) raXOC't_)t_/o¢, the given area rb 7rpor_O_v (or lrpoKdlxcvo_,) X(op_ov.
Given in position O_r[t simply (se. $c_o/_vq).

Of hypotheses the parts of the verb _ror{_tt_at and (for the

passive) _rd_tp_at are used; with the same suppositions _'_v a_v
_o_q_iv_v, let the said suppositions be made _rro_d_O(o rh dp_?t_&a,

we make these suppositions 67rortO_lz_Oard_.

Where in a reductioad absurdum the original hypothesis is

referred to, and generally where an earlier step is quoted, the past
tense of the verb is used ; but it was not (so) o_K_u 8_, for it was less

_1_Tat) _do'(ro_, O_y were irroved equal d_'_dxO*lo'au _o'oqfor this has
been proved to be possible _¢_e&rat yhp ro_ro _vva_'b_ _dv. Where a

hypothesis is thus quoted, the past tense of _rgttttptat. has various
constructions after it, (1) an axljeeti_e or participle, AZ, BH were

suioposed equal [aat grNx¢trro a_ AZ, BH, it is by hypothesis a tangent

1JTr&_t'ro E'/l't_a_ovo-ct_ (2) an infinitive, for by hypothesis it does not

cut ¢r_r_tro ydp tall ¢_lx_tv, the axis is by hypothesis not at right
angles to the parallel planes 6_r_x[tro 5 _$¢oe tt_ t_lz_ dpOS_ ror't v_

ra_d30,aha _r&_Sa, (3) the, plane is mtpposed to have been drawn
through the centre rb ¢m_r_3ov v_oK_tTat Std ro_ gt'l_pOi_ _XOat,

Supposing it found o;p_O&ro_ absolutely. Suppose it done

Teyo_.
The usual idiomatic use of d 3_/_ after a negative statement

may be mentioned; it urill not meet the s_zrface in another point,

otherwise .. o¢_Tdp ?t_k_rat tear" _k)to tral_o_ r_ _mq_avda_" d $_
t'_ ....

Cf. Apollonius of Perga, p. lax, note.
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Inferences. and adaptation to different oases.

The usual equivalent for therefore is a"pa; o_v and vot'vvv are

generally usex] in a somewhat weaker sense to mark the starting-
point of an argument, thus d,r[l o_v may be translated as since, then.
Since is _rc_ because 6tb_'t.

*rohk_/_h)tov much mote then is apparently not used in Archi-
medes, who has *rohk,_ alone; thus much less then is the ratio of the

circumscribed .figure to the inscribed thaq_ thag of K to H *rohXG,

K ,_pb_H.
&d with the a_cusative is a common way of expressing the

reason why; because the cone is isosceles 6t_ r5 i(rocrr,)t_ _tvat rSv

KCovov,for the same reason 6t3_vaffrd.

8Ld with the genitive expresses the means by which a proposition

is proved; by means of the con._t_,ction $L_ v_ ra_'aefrev_% by the
same means 6th .r_v a¢rr_v, by the same method 6_h _o9 affro9 rpbqrov.

Whenever this is the case, the surfitce is grea_r Orav _'o_ro _,

tz¢_tov 7[vt.rat _ dTr@dwta..., if this" is the case, the angle BA® is
equal .... d 6} _'ogro, _cra_a'Av _ brrb BA® 7(ovga.. , which is the same

thiruj as showing that... _ ra_'dv_art _'_, 6d_at, _rt ....

Similarly for the sector 5pto[(o_ 6} ra't _,rlto9 rolz_w_, the proof

is the same as (that used to show) that 5 a_h gt_rd3ca_t__rr_p _al g'a,

the. proof that...is the same _ a{rrhdrrdbt,$t2 _,_t xal 6tdrt ..,the same

argument holds for all rectilineal J_ures inscribed in the segments in
the recognised manner (see p. 204) _vr; _rdrrwv *_,Owpdlzl_O_vv,_v

_77pa_o/_vwv _ rh r/zd/_ara 7vtopt_ 5 abrbs Abyo_ ; it will be possible,
luzvin(I proved it for a circle, to transfer the same arguinent in

the case oJ" the sector _o'rat _Tr_tK_Aol) 6¢[_aPTa Ix[rayaT[;v TSV O#tZotov

Adyov _al _wl _o9 rol_*'o_; the rest will be the same, but it will be the
lesser of the diam_eters which will be ,ntercepted within the spheroid

(imatea_ of the greater) _'h ix}v ff)Ota r_t abrh _cradrab _v 6} _ta/x_rpov
_)_dO'O'WV¢tra[tTat"" _ _a_ro_,ct_O_cra _v r_, _rdpatpo_tbd; it will make

*_r_.. .[_r_. . .nO difference whetl_.'_r...or... 6tot_r_ 6}ov$cv,

Conclusions.

The proposition is therefore obvio_, or _s proved _Aov o_v _(r_'_

(or _i_xrat) r5 _rpor_O_v; similarly c_av_pbv o_v _o-rtv, _ E&u _L_aq
and l_, 6_ _'ogro 6d_a_ Which is absurd, or irapossible _rr_p _rorov,

• tor d_varov.

A curious use of two negatives ia contained in the following:
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oCJ,c_oa o_,c_o-r_,_&rpov _o_ _dpco¢ ro_ AEZ _'O_Toivovr5 N ¢ra/_7ov.

_a_rtv apa, ttuzrefore it is not possible that the point N should not be the

centre of gravity of the triangle AEZ. It must therefore be so.

Thus a rhombus u_ill have been formed _o'rat _ ),eyovd_ Dfl_flo_ ;

two unequal straight lines have been fo_end satisfying the requiremeng

¢_p_]p,[vat ¢_a'_V_pa _o t"_OcT,at _vto-ot _roto_O'at "r5 _-{'ra-,/fta.

Direction, concavity, convexity.

In the same direction &'_ r_ a3rd, in the other direction dTr'_

rh _rcpa, concave in the same direction lTr't rh abrh KoDty ; in the same

direction as &'t Th a_rd with the dative or dq_" _, thus in the same

direction as the vertex of the cone. _rr_ _ abr& r_, "ro_ _dvov xopv_,

drawu in the same direction as (that of) the convex Mde of it _r't ,_
a • • /

avTa a_olz_vat , _d?" _ _rt vh _coprh a_ro_. For on the same side of _r't

rh a3rd is followed by the genitive, they fall on the same side of the

line _rr_ rh a_rh _rt'rrrovat r'_ Tpalxtz_¢.

On each side of _dp" _xdvepa (with gen.); on each side of the plane

of the base ;_' _dr_pa to9 gwtrr_ov _ fldo'_to_.

Miscellaneous.

Property crv_rrw/za. 1)roceedzng thus continually, d_'_ ro_rro

ro_o_vr_, _t_'_ vo_rov 7_volz_vov, or to'roy _'_ 7wolz_vov. In the

elements _v _ o-votx_t_t.

One special difference between our terminology and the Greek is

that whereas we speak of any circle, any straight line and the like,

the Greeks say every circle, every straight line, etc. Thus any

pyramid is one third part of the pri,_m urith the same base as the

pyramid and equal height rraaa rrvpalx't_ rpi_ov I_'po_ tar'_ "ro_ rpi_/zaro_

to9 rdv a_,rdv fld(rw _XOVrO_ r_ _rvpalz2, xa; _ho_ _rov. I define the

diameter, of any segment as 8_dlxerpov _aX_o_ ravr_; rlz_lzaro_. To

exceed any ass_. ned (mazjnitude) of those which are comparable with

one another _w_p_'X_tV rra_5_ _'o_ _rpo'r_O_vro_ r_ov rrp5_ _hyha

hq, ot_vo) v.

Another noteworthy difference is illustrated in the last sentence.

The Greeks did not speak as we do of a given area, a given ratio

e_e., but of the given area, the given ratio, and the like. Thus It is

possible...to leave certain segments less than a given area _vvar6v

Xo_p[ov ; to divide a given sphere by a plane so tlw.t the segments have

to one another an assigned ratio _hv _o_(rav o'_Sa_pav _r_r_'_ "r(tz_v ,

¢O0_( "re ,rl_al_a_-a a{rr_ _roT' _._.a_ "rSv 7ax_cv'ra honor _Xcw.

H,A.
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Ma4_nitudes in arithmetical progression are said to exceed each

other by an equal (amount); if there be any number of magnitudes i_
arithmetical progression _ xa _¢ov'rLFc_/_#_a5rro(raogv _ _cr_ _AAd)LoJv

_r_pE'Xovra. The common difference is the excess gw[poXg, and the

terms collectively are spoken of as the magnitudes exceeding by the.

equal (difference) vh _'_ _r_ _rEpixowra. T]_e least term is r5 Du_X_q'rov,

*he greatest term T5 p_/,q,ov. The sum of the terms is expressed by

Terms of a geometrical progression are simply in (_ontinued)

proportlo_ dvdAoTov, the series is then _ _vahoT_a, the proportion,
and a term of the series is _'_ T_v _v _'_ a_r_ _va2_oT[,a. 2Vurabers in

geometrical progression beginning from unity arc 3pt0/zol £vdkoTov
d_r5 povd$o_. Let the term h of the progression be taken which

is distant the same number of terms from ® as A is d_stant from

unity _(_0(_ _ _ _voAoTl_ 5 h _r_xcov d_r5 _o_ ® _o(ro(_'_ov%_)oov_
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ON SPHERE AND CYLINDER.

BOOK I.

"ARCHIMEDES to Dositheus greeting.

On a former occasion I sent you the investigations which

I had up to that time completed, including the proofs, showing
that any segment bounded by a straight line and a section of a

right-angled cone [a parabola] is four-thirds of the triangle
which has the same base with the segment and equal height.
Since then certain theorems not hitherto demonstrated (dve-

_7_r_v) have occurred to me, and I have worked out the proofs

of them. They are these : first, that the surface of any sphere
is four times its greatest circle (_o_ _e-/io'rov K(,_Xov); next,
that the surface of any segment of a sphere is equal to a circle

whose radius (3 _ vo_ _vrpov) is equal to the straight line
drawn from the vertex (aopvdp_) of the segment to the circum-
ference of the circle which is the base of the segment, and,

further, that any cylinder having its base equal to the greatest
circle of those in the sphere, and height equal to the diameter

of the sphere, is itself [i.e. in content] half as large again as the
sphere, and its surface also [including its bases] is half as large

again as the surface of the sphere. Now these properties were
all along naturally inherent in the figures referred to (a6_ _

_ae_ _rpouTr_pxev 7repl _'d elp_g,_va o_l_ara), but remained
unknown to those who were before my time engaged in the

study of geometry. Having, however, now discovered that the
properties are true of these figures, I cannot feel any hesitation

H.X. 1
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in setting them side by side both with my former investiga-
tions and with those of the theorems of Eudoxus on solids

which are held to be most irrefragably established, namely,

that any pyramid is one third part of the prism which has the
same base with the pyramid and equal height, and that any

cone is one third part of the cylinder which has the same
base with the cone and equal height. For, though these

properties also were naturally inherent in the figures all along,
yet they were in fact unknown to all the many able geometers
who lived before Eudoxus. and had not been observed by any
one. Now, however, it will be open to those who possess the

requisite ability to examine these discoveries of mine. They

ought to have been published while Conon was still alive,
for I should conceive that he would best have been able to

grasp them and to pronounce upon them the appropriate
verdict ; but, as I judge it well to communicate them to those
who are conversant with mathematics, I send them to you with

the proofs written out, which it will be open to mathematicians
to examine. Farewell.

I first set out the axioms * and the assumptions which I

have used for the proofs of my propositions.

DEFINITIONS.

1. There are in a plane certain terminated bent lines

(tcal_qr{_ka__pal_a'_ _eTrepa_l_va_)_, which either lie wholly on
the same side of the straight lines joining their extremities, or

have no part of them on the other side.

2. I apply the term concave in the same direction

to a line such that, if any two points on it are taken, either

all the straight lines connccting the points fall on the same
side of the line, or some fall on one and the same side while
others fall on the line itself, but none on the other side.

• Though the word used is _L&g_ra, the "axioms" are more of the nature

of definitions ; and in fact Eutocius in his notes speaks of them as such (_po,).
J- Under the germ bent ltne Archimedes includes not only curved lines of

continuous curvature, but lines made up of any number of lines which may be
either straight or curved.
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3. Similarly also there are certain terminated surfaces, not

themselves being in a plane but having their extremities in a
plane, and such that they will either be wholly on the same

side of the plane containing their extremities, or have no part
of them on the other side.

4. I apply the term concave in the same direction
_o surfaces such that, if any two points on them are taken, the

straight lines connecting the points either all fall on the same
side of th_ surface, or some fall on one and the same side of

it while some i_,fllupon it, but none on the other side.

5. I use the term solid sector, when a cone cuts a sphere,
and has its apex at the centre of the sphere, to denote the

figure comprehended by the surface of the cone and the surface
of the sphere included within the cone.

6. I apply the term solid rhombus, when two cones with
the same base have their apices on opposite sides of the plane

of the base in such a position that their axes lie in a straight
line, to denote the solid figure made up of both the cones.

ASSUMPTIONS

1. Of all litres which have tl_e same extremities the straight
line is the least _.

* This well-kno_n Arch]medcan assumption is scarcely, as it stands, a
dejbatzon of a straight line, though Proelus says [p. 110 ed. Friedlem] "Archi.

medes defined (_p_o'aro} the straight line as the least of those [lines] which have

the same extremities. For because, as Euclid's definition says, _ faov tdra_ ro?_
;_' i_vr_ tV_do,_, it is in consequence the least of those which have the same

extremities." Proclus had lust before [p. 109] explained Euclid's definition,

which, as will be seen, is different from the ordinary version given in our text-

books; a straight line is not "that whmh lies evenly between _ts extreme points,"

but "that which _ _'_ov rd_ _" _a_r_ mT_ioe_ xdva_." Thewords of Proelus
are, "He [Euclid I shows by means of th1_ that the straight line alone [of all

lines] occupies a distance (_r_X_,v _dtr_a) equal to that between the points
on it. For, as far as one of its points is removed from another, so great is the

length (_d_._8o_) of the straight hne of which the points are the extremities;

• and this is the meaning of r5 t_ _o, gdaOa, ro_s _¢' tat_r_ a_e_o,$. But, if you
take two points on a circumference or any other line, the distance cut off

between them along the line is greater than the interval separating them ; and

this is the case w_th every hne except the straight hne." It appears then from

this that Euclid's definitmn should be understood in a sense very like that of

1_$
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2. Of other lines in a plane and having the same extremi-

ties, [any two] such are unequal whenever both are concave in
the same direction and one of them is either wholly included

between the other and the straight line which has the same
extremities with it, or is partly included by, and is partly

common with, the other; and that [line] which is included is
the lesser [of the two].

3. Similarly, of surfaces which have the same extremities,
if those extremities are in a plane, the plane is the least [in

area].

4. Of other surfaces v_th the same extremities, the ex-

tremities being in a plane, [any two] such are unequal when-
ever both are concave in the same direction and one surface

is either wholly included between the other and the plane which

has the same extremities with it, or is partly included by, and
partly common with, the other; and that [surface] which is
included is the lesser [of the two in area].

5. Further, of unequal lines, unequal surfaces, and unequal

solids, the greater exceeds the less by such a magnitude as,
when added to itself, can be made to exceed any assigned

magnitude among those which are comparable with [it and
with] one another t.

These things being premised, if a polygon be inscribed in a

circle, it is plain that the perimeter of the inscribed polygon is
less than the circumference of the circle; for each of the sides

of the polygon is less than that part of the circumference of the
circle which is cut off by it." ,.

Archimedes'assumption,andwemightperhapstranslateas follows,"A straight
l/he /s tha_whichextendsequally(_ _aov_ratJ with the po/nts on it," or, to
(ollo_ P_celu_' iuterp_et_.tionm_ do,sly, "A at_9.ightllne is that which
represents equal extension with [the distances separating] the points on it."

• With regardtothis assumptioncomparethe Introduction,chapter I_. §2.
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Proposition 1.

If a polygon be circumscribed about a circle, the perimeter

of the circumscribed polygon is greater A
than the perimeter of the circle. Q

Let any two adjacent sides, meet-
ing in A, touch the circle at P, Q

respectively.

Then [Assumptions, 2]

PA + AQ > (arc _Pq).

A similar inequality holds for each

angle of the polygon; and, by ad-
dition, the required result follows.

Proposition _.

Given two unequal magnitudes, i_ is possible to find two un-
equal straight lines such that the greater straight line has to the

less a ratio less than the greater magnitude has to the less.

Let AB, D represent the two unequal magnitudes, AB being
the greater.

Suppose BC measured along BA equal to D, and let GH be
any straight line. e

Then, if CA be added to itself a sufficient a
number of times, the sum will exceed D. Let N

AF be this sum, and take E on GH produced

such that GH is the .same multiple of HE that I

AFis of AC. J

•hus NII : HO = AO : AF. o

But, since AF > D (or CB),
AC : AF <AC : ('B.

Therefore, componendo, a F
EG : GH < AB : 1).

Hence EG, GH are two lines satisfying the given condition.
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Proposition 3.

Given two unequal magnitudes and a circle, it is possible to
inscribe a polygon in the circle and to describe another about it

so that the side of the circumscribed polygon may have to the side

of the inscribed polygon a ratio less than that of the greater
magnitude to the less.

Let A, B represent the given mag_aitudes, A being the

greater.

Find [Prop. 2] two straight lines F, KL, of which F is the

greater, such that
F:KL<A :B ....................... (1).

D

5 A 8

G I. M

Draw LM perpendicular to ZK and of such length that
KM=F.

In the given circle let CE, DG be two diametem at right
angles. Then, bisecting the angle DOC, biseetlng the half
again, and so on, we shall arrive ultimately at an angle (as

_YOC) less than twice the angle LKM.

Join NC, which (by the construction) wi/1 be the side of a

regularpolygoninscribedinthe circle.Let OP be the radius

of the circlebisectingthe angleNO(/(and thereforebisecting

NC vat right angles, in tt, .,_ay),a_d _et the tangent at P mee$
OG, ON _rodtt 'c_4 iu g, I' _e%_ee%ively.

Now, since z CON < 2 z LKM,

[_.HOC < Z LKM,
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and the angles at H, Z axe right ;
therefore MK : LK > OC : OH

> OP : OH.

Hence ST : CN < MK : LK

<F: LK;

therefore, afortiori, by (1),
ST:CcV<A :B.

Thus two polygons are found satisfying the given condition.

Proposition 4.

Again, given two unequal magnitudes and a sector, it is

pos_4]ole to describe a polygon about the sector and to inscribe
another in it so that the side of the circumscribed polygon may

have to the side of the inscribed polygon a ratio less than the
greater magnitade has to the less.

[The "inscribed polygon" found in this proposition is one
which has for two sides the two radii bounding the sector, while
the remaining sides (the number of which is, by construction,

some power of 2) subtend equal parts of the arc of the sector;
the "circumscribed polygon" is formed by the tangents parallel

to the sides of the inscribed polygon and by the two bounding
radii produced.]

T

O D K

t. _iI

J_ _bis ca_ _ve make _be same construction as in the last

pr_po_t_o_ _xo_pt, that we bisee_ the angle COD of _he secWr,
instead of the right angle between two diameters, then bisect
the half again, and so on. The proof is exactly similar to the
preceding one.
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Propomiflon 5.

Given a circle and two unequal magnitudes, to describe a

polygon about the circle and insel_e another in it, so that the
circumscribed polygon may have to the inscribed a ratio less than
the greater maqnitude has to the less.

Let A be the given circle and B, C the given magmtudes, B

being the greater.

o

te

F

Take two unequal straight lines D, E, of which D is the
gro_tor, such tha_ D : E< B : 6_ fProp. 2J, and let F be a mean
proportional between D, E, so float D i_ _l_o gr_te_ than F.

Describe (in the manner of Prop. 3) one polygon about the
circle, and inscribe another in it, so that the side of the former
has to the side of the latter a ratio less than the ratio D : F.

Thus the duplicate ratio of the side of the former polygon
to the side of the latter is less than the ratio D' : F t.

But the said duplicate ratio of the sides is equal to the

ratio of the areas of the polygons, since they are similar;

therefore the area of the circumscribed polygon has to the

area of the inscribed polygon a ratio less than the ratio D' : F',
or D : E, and afortiori less than the ratio B : C.
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Proposition 6.

"Similarly we can show that, given two unequal rrutgnitudes
and a sector, it is possible to circumscribe a polygon about the
sector and insoribe in it another similar one so that the circum-

scribed may have to the inscribed a ratio less than the greater
magnitude has to the less.

And it is likewise clear that, if a circle or a sector, as well

as a certain area, be given, it is possible, by inscribing regular

polygons in the circle or sector, and by continually inscribing
such in the re_naining segments, to leave segments of the circle or
sector which are [together] less than the given area. For this is

proved in the Elements [Eucl. xtI. 2].

But it is yet to be proved that, given a circle or sector and
an area, it is possible to describe a polygon about the circle or

sector, such that the area remaining between the circuv_erence

and the circumscribed fig_ere is less than the given area."

J
I

1

The proof for the circle (which, as Archimedes says, can be

equally applied to a sector) is as follows.

Let A be the given circle and B the given area

:Now, there being two unequal magnitudes A + B and A, let
a polygon (C) be circumscribed about the circle and a polygon

(/) inscribed in it [as in Prop. 5], so that

C: I<A+B: A ..................... (1).

The circumscribed polygon (C) shall be that required.
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For the circle (A) is greater than the inscribed polygon (/).

Therefore, from (1), a fortiori,

C:A<A+B:A,

whence C < A + B,

or C-A <B.

Proposition 7.

If in an isosceles vone [i.e. a right circular cone] a pyramid
be inscribed having an equilateral base, the surface of the
pyramid excluding the base is eTtal to a triangle having its

base equal to the peri_wter of the base of the pyramid and its
heigld equal to the perpendicular draw_ from the apex on one

side of the base.

Since the sides of the base of the pyramid arc equal, it

follows that the perpendiculars from th_ apex to all the sides

of the base are equal; and the proof of the proposition is
obvious.

Proposition 8.

If a pyramid be circumscribed about an isosceles cone, the
surface of the pyramid excluding its base is equal to a triangle

having its base equal to the perimeter of the base of the pyramid
and its height equal to the side [i.e. a generator] of the cone.

The base of the pyramid is a polygon circumscribed about
the circulm" base of the cone, and the line joining the apex of

the cone or pyramid to the point of contact of any side of the

polygon is perpendicular to that side. Also all these perpen-
diculax_, being generators of the cone, are equal ; whence the

proposition follows immediately.
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Propolition 9.

If in the circular ba,_e of an isosceles cone a chord be placed,

and from its extremities straight lines be drawn to the apex of
the cone, the triangle so formed will be less than the portion of
the surface of the cone intercepted between the lines drawn to the

apex.

Let ABC be the circular base of the cone, and 0 its apex.

Draw a chord AB in the circle, and join OA, OB. Bisect
the arc A CB in C, and join A C, BC, OC.

Then A OAC+ A OBC> A OAB.

o

E F

G L D

A 8

Let the excess of the sum of the first two triangles over the
third be equal to the area/).

Then D is either less than the sum of the segments AE(],
CFB, or not less.

I. Let D be not less than the sum of the segments referred
to.

We have now two surfaces

(1) that consisting of the portion OAEC of the surface

of the cone together with the segment AEC, and

(2) the triangle OAC;

and, since the two surfaces have the same extremities (the

perimeter of the triangle OAC), the former surface is greater
than the latter, which is included by it [Assumptions, 3 or 4].
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Hence (surfaceOAEC) + (segmentAEC") > A OAC.

Similarly(surfaceOCFB) + (segmentCFB) > A OBC.

Therefore,sinceD isnotlessthanthe sum ofthe segments,

we have,by addition,

(surface OAECFB) + D > A OAC+ lXOBC

>/x OAB + D, by hypothesis.

Taking away the common part D, we have the required
result.

II. Let D be less than the sum of the segments AEC,
CFB.

If now we bisect the arcs AC, CB, then bisect the halves,

and so on, we shall ultimately leave segments which are
together less than D. [Prop. 6]

Let AGE, EHC, CKF, FLB be those segments, and join
OE, OF.

Then, as before,

(surface OA GE) + (segment AGE) > A OAE

and (surface OEHC) + (segment EHC) > A OEC.

Therefore (surface OA GHC) + (segments AGE, EHC)

> A OAE + A OEC

> A OAC, afortiori.

Similarly for the part of the surface of the cone bounded by
OO, OB and the are ffFB.

Hence, by addition,

(surface OA GEHCKFLB) + (segments AGE, EHC, CKF, FLB)

>AOAC+AOBG

>/x OAB + D, by hypothesis.

But the sum of the segments is less than D, and the re-
cluivedresultfollows.



ON THE SPHERE AND CYLINDER I. 13

Proposition 10.

If in the plane of the circular base of an isosceles cone two

tangents be drawn to the circle meeting in a point, and the points
of contact and the point of concourse of the tangents be respectively

joined to the apex of the cone, the sum of the two triangles
formed by the joining lines and the two tangents are together

greater than the included portion of the surface of the cone.

Let ABC be the circular base of the cone, 0 its apex, AD,

BD the two tangents to the circle meeting in D. Join OA,
OB, OD.

Let ECF be drawn touching the circle at C, the middle

point of the axe ACB, and therefore parallel to AB. Join
OF,, OF.

Then ED + DF > EF,

and, adding AE + FB to each side,

AD + DB > AE+ EF+ FB.

Now OA, OC, OB, being generators of the cone, are equal,

and they are respectively perpendicular to the tangents at A,
C,B.

D

A _
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It follows that

A OAD + A ODB > A OAE + A OEF+ A OFB.

Let the area G be equal to the excess of the fiz_t sum over
the second.

G is then either less, or not less, than the sum of the spaces

EAHC, FCKB remaining between the circle and the tangents,
which sum we will call L.

I. Let G be not less than L.

We have now two surfaces

(1) that of the pyramid with apex 0 and base AEFB,

excluding the face OAB,

(2) that consisting of the part OACB of the surface of the

cone together with the segment ACB.

These two surfaces have the same extremities, viz. the

perimeter of the triangle OAB, and, since the former includes
the latter, the former is the greater [Assumptions, 4].

That is, the surface of the pyramid exclusive of _he face

OAB is greater than the sum of the surface OACB and the
_egrncnt A CB.

Taking away the segment from each sum, we have

A OAE+ZX OEF+ A OFB+L > the surface OAItCKB.

And G is not less than L.

It follows that

A OAE+ A OEF+ A OFB + G,

which is by hypothesis equal to A OAD+ A ODB, is greater
than the same surface.

II. Let G be less than L.

If we bisect the arcs AC, CB and draw tangents at their

middle points, then bisect the halves and draw tangents, and

so on, we shall lastly arrive at a polygon such that the sum

of the parts remaining between the sides of the polygon and
the circumference of the segment is less than G.
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Let the remainders be those between the segment and the

polygon APQRSB, and let their sum be M. Join OP, OQ,
etc.

Then, as before,

/x OAE + A OEF + /x OFB >/x OAP +/_ OPQ +... + A OSB.

Also, as before,

(surface of pyramid OAPQRSB excluding the face OAB)
> the part OA CB of the surface of the

cone together with the segment ACB.

Taking away the segment from each sum,

/x OAP +/x OPQ + ... + M> the part OA CB of the
surface of the cone.

Hence, a fortiori,
/x OAE + /_ OEF+ /x OFB+G,

which is by hypothesis equal to
OAD + A ODB,

is greater than the part OACB of the surface of the cone.

Proposition I I.

If a plane parallel to the axis of a right cylinder cut the
cylinder, the part of the surface of the cylinder cut off by the

plane is greater than the area _f tile parallelogram in which the
plane cuts it.

Proposition 12.

If at the extremities of two generators of any right cylinder
tunge_ts be drawn to the circular bases in the planes of those

bases respectively, and if the pairs of tangents _neet, the
parallelograms rotated by each generator and the two corre-

sponding tangents respectively are together greater than the
included portion of the surface of the cylinder between the two
generators.

[The proofs of these two propositions follow exactly the

methods of Props. 9, 10 respectively, and it is therefore un-

necessary to reproduce them.]
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"From the properties thus proved it is clear (1) that, if a
pyramid be inscribed in an isosceles cone, the surface of the

pyramid excluding the base is less than the surface of the cone
[excluding the base], and (2) that, _f a pyramid be circumscribed

about an isosceles cone, the surface of the pyramid excluding the
base is greater than the surface of the cone excluding the base.

"It is also clear from what has been proved both (1) that,
if a prism be .inscribed in a right cylinder, the surface of the

prism made up of its parallelograms [i.e. excluding its bases] is
less than the surface of the cylinder excl_wling its bases, and

(2) that, if a prism be circumscribed about a right cylinder, the
surface of the prism nmde up of its parallelograms is greater

than the surface of the cylinder excluding its bases."

Proposition 13.

The surface of any right cylinder excluding the bases is eT_al

to a circle whose radius is a mean proportional between the side
[i.e. a generator] of the cylinder and the diameter of its base.

Let the base of the cylinder be the circle A, and make CD

equal to the diameter of this circle, and EF equal to the height
of the cylinder.

N E
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Let H be a mean proportional between CD, EF, and B
a circle with radius equal to H.

Then the circle B shall be equal to the surface of the

cylinder (excluding the bases), which we will call S.

For, if not, B must be either greater or less than S.

I. Suppose B<S.

Then it is possible to circumscribe a regular polygon about

B, and to inscribe another in it, such that the ratio of the
former to the latter is less than the ratio S : B.

Suppose this done, and circumscribe about A a polygon
similar to that described about B; then erect on the polygon

about A a prism of the same height as the cylinder. The

prism will therefore be circumscribed to the cylinder.

Let KD, perpendicular to CD, and FL, perpendicular to

EF, be each equal to the perimeter of the polygon about A.
Bisect CD in M, and join MK.

Then A KDM = the polygon about A.

Also _ EL = surface of prism (excluding bases).

Produce FE to N so that FE = EN, and join NL.

Now the polygons about A, B, being similar, are in the
duplicate ratio of the radii of A, B.

Thus

A KDM : (polygon about B)= MD 2 : H _

= MD" : CD. EF

= MD : .5"_F

= A KDM : A LFN

(since DK = FZ)

Therefore (polygon about B)= A ZFiV
= I:::7EL

= (surface of prism about A),

from above.

But (polygon about B) : (polygon in B) < S : B.
H.A. 2
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Therefore

(surface of prism about A) : (polygon in B) < S : B,

and, alternately,

(surface of prism about A) : S < (polygon in B) : B ;

which is impossible, since the surface of the prism is greater
than S, while the polygon inscribed in/3 is less than B.

Therefore B _: S.

II. Suppose B > S.

Let a regular polygon be circumscribed about B and another
inscribed in it so that

(polygon about B) : (polygon in B) < B : S.

Inscribe in A a polygon similar to that inscribed in B, and

erect a prism on the polygon inscribed in A of the same height

as the cylinder.

Again, let DK, FL, drawn as before, be each equal to the
perimeter of the polygon inscribed in A.

Then, in this case,

A KDM > (polygon inscribed in A)

(since the perpendicular from the centre on a side of the

polygon is less than the radius of A ).

Also A LF_V = 1:2 EL = surface of prism (excluding bases).
Now

(polygon in A) : (polygon in B)= MD _ : H',
=/x KDM : ZXLFN, as before.

And AKDM > (polygon in A).

Therefore

A LFN, or (surface of prism) > (polygon in B).

But this is impossible, because

(polygon about B) : (polygon in B)< B : S,

< (polygon about B) : S, afortiori,

so that (polygon in B) > S,

> (surface of prism), a forgot.

Hence B is neither greater nor less than S, and therefore
B--S.
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Propoadtion 14.

The surface of any isosceles cone excluding the base is equal
to a circle whose radius is a mean proportional between the side

of the cone [a generator] and the radius of the circle which is the
base of the cone.

Let the circle A be the base of the cone ; draw C equal to
the radius of the circle, and D equal to the side of the cone, and
let E be a mean proportional between C, D.

D

Draw a circle B with radius equal to E.

Then shall B be equal to the surface of the cone (excluding
the base), which we will call S.

If not, B must be either greater or less than S.

I. Suppose B < S.

Let a regular polygon be described about B and a similar
one inscribed in it such that the former has to the latter a ratio

less than the ratio S : B.

De_ribe about A another similar polygon, and on it set up
a pyramid with apex the same aa that of the cone.

Then (polygon about A) : (polygon about B)

= C* : E _

=C:D

-- (polygon about A) : (surface of pyramid excluding base).
2--2
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Therefore

(surface of pyramid) -- (polygon about B).

Now (polygon about B) : (polygon in B) < S : B.
Therefore

(surface of pyramid) : (polygon in B) < S : B,

which is impossible, (because the surface of the pyramid is

greater than S, while the polygon in B is less than B).

Hence B _: S.

II. Suppose B > S.
t

Take regular polygons circumscribed and inscribed to B such
that the ratio of the former to the latter is less than the ratio

B:S.

Inscribe in A a similar polygon to that inscribed in B, and

erect a p)-ramid oil the polygon inscribed in A with apex the
same as that of the cone.

In this case

(polygon in A) : (polygon in B) = C2 : E '_
=C:D

> (polygon in A) : (surface of pyramid excluding ba._e).

This is clear because the ratio of C to D is greater than the
ratio of the perpendicular from the centre of A on a side of the

polygon to the perpendicular from the apex of the cone on the
same side °.

Therefore

(surface of pyramid) > (polygon in B).

But (polygon about B) : (polygon in B) < B : S.

Therefore, afortiori,

(polygon about B) : (surface of pyramid) < B : S ;

which is impossible.

Since therefore B is neither greater nor less than S,
B=S.

This is of coursethe geometricalequivalentof sayingthat, if a, fl be two
angleseach less than a rightangle,anda>fl, then sin a>sin ft.
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Propolition 15.

The surface of any isosceles cone has the same ratio to its
base as the side of the cone has to the radius of the base.

By Prop. 14, the surface of the cone is equal to a circle
whose radius is a mean proportional between the side of the
cone and the radius of the base.

Hence, since circles are to one another as the squares of
their radii, the proposition follows.

Proposition 16.

It" an isosceles co_e be cu_ by a plane parallel to the base, the
portion of the surface of the cone between the parallel planes is
equal to a circle whese radius is a mean proloortia_al between (1)
the portion of the side of the cone intercepted by the parallel

planes and (2) the llne which is equal to the sum of the radii of
the circles in the parallel planes.

Let OAB be a triangle through the axis of a cone, DE its
intersection with the plane cutting off the
frustum, and OFC the axis of the cone. o

Then the surface of the cone OAB is /1\
equal to a circle whose radius is equal to

_/_. AC. [Prop. 14.]

Similarly the surface of the cone ODE

is equal to a circle whose radius is equal
to _/OD. DF.

A C !i
And the surface of the frustum is

equal to the difference between the two circles.

Now

OA. AC- OD. DF = DA. AC + OD. AC- OD. DF.

But OD. A C = OA . DF,

since OA : A C = OD : DF.
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Hence OA. AC - OD. DF-- DA. AC + DA. DF

= DA. (A C + DF).

And, since circles are to one another as the squares of their
radii, it follows that the difference between the circles whose

radii are _/OA .AC, _/OD. DF respectively is equal to a circle

whose radius is 4DA . (AC + DF).

Therefore the surface of the frustum is equal to this circle.

Lelnlnall.

" 1. Cones having equal height have the same ratio as their
bases; and those having equal bases have the same ratio as their

heights*.

2. If a cylinder be cut by a plane parallel to the base, then,
as the cyli_wler is to the cylinder, so m the axis to the axis"t.

3. The cones which have the same bases as the cylinders [a_wl

equal height] are in the same ratio as the cyli_ders.

4. Also the bases of equal cones are reciprocally proportional
to their heights ; and those cones whose bases are reciprocally

proportional to their heights are equal _.

5. Also the cones, the diameters of whose bases have the same
ratio as their axes, are to one another in the triplicate ratio of the

diameters of the bases _.

And all these propositions have been proved by earlier
geometers."

* Euchd xu. 11. "Cones and cylinders of equal height are to one another
as their bases."

Euclid XIL 14. "Cones and cylinders on equal bases are to one another as
their heights."

t" Euclid xxL 13. "If a cyhnder be cut by a plane parallel to the opposite
planes [the bases], then, as the cylinder is to the cyhnder, so will the axis be
to the axis."

** Euclid xIL 15. "The bases of equal cones and cylinders are reciprocally
proportional to their heights; and those cones and cyhnders whose bases are
reciprocally proportional to their heights are equal."

§ Euclid xxx. 12. "Similar cones and cylinders are to one another in the

triplicate ratio of the diameters of their bases."
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PropoJdtion 17.

If tlwre be two isosceles cones, and the surface of one cone be
equal to the base of the other, while the per_e_wlicular from the
centre of the base [of the first cone] on the side of that cone is

equal to the height [of the second], the cones will be equal.

Let OAB, DEF be triangles through the axes of two cones

respectively, C, G the centres of the respective bases, GH the

E

o G D

/

F

perpendicular from G on PD ; and suppose that the base of the

cone OAB is equal to the surface of the cone DEF, and
that OC = Gtt.

Then, since the base of OAB is equal to the surface of
DEF,

(base of cone OAB) : (base of cone DEF)

= (surface of DEF) : (base of DEF)

= DF : FG [Prop. 15]

= DG : GH, by similar triangles,

= DG : OC.

Therefore the bases of the cones are reciprocally propor-

tional to their heights; whence the cones are equal. [Lemma
4.]
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Proposition 18.

Any solid rhombus consisting of isosceles cones is equal to

the cone which has its base equal to the surface of one of the
cones composing the rhombus and its height equal to the perpen-
dicular drawn from the apex of the second cone to one side of
the first cone.

Let the rhombus be OABD consisting of two cones with
apices O, D and with a common base (the circle about AB as
diameter).

F

o D M

E /'

/
N

Let FHK be another cone with base equal to the surface of
the cone OAB and height FG equal to DE, the perpendicular
from D on OB.

Then shall the cone FHK be equal to the rhombus.

Construct a third cone LM2V with base (the circle about

MA r) equal to the base of OAB and height LP equal to OD.

Then, since LP = OD,

LP : CD = OD : CD.

But [Lemma 1] OD : CD = (rhombus OADB) : (cone DAB),

and ZP : CD -- (cone LMN) : (cone DAB).

It follows that

(rhombus OADB) = (cone LMIV) ..................... (1).



ON THE SPHERE AND CYLINDER I. 25

Again, since AB = MN, and

(surface of OAB) = (base of FHK),

(base of FHK) : (base of LMIV)

= (suriace of OAB) : (base of OAB)

= OB : BC [Prop. 15]

= OD : DE, by similar triangles,

= LP : FG, by hypothesis.

Thus, in the cones FHK, LMN, the bases are reciprocally

proportional to the heights.

Thereibre the cones FHK, LMN are equal,

and hence, by (1), the cone FHK is equal to the given
solid rhombus.

Proposition 19.

If an isosceles cone be cut by a plane parallel to the base,
and on the resulting circ_dar section a cone be described having
as its apex the centre of the base [of the first cone], and if the
rhombus so formed be taken away from the whole cone, the part

remaining will be equal to the cone with base equal to the aurface
of the portion of the first cone between the parallel planes and

with height equal to the perpendicular drawn from the centre of
the base of the first cone o_ o_e side of that cone.

Let the cone OAB be cut by a plane parallel to the base in
the circle on DE as diameter. Let C be the centre of the base

of the cone, and with C as apex and the circle about DE as base
describe a cone, making with the cone ODin' the rhombus
ODCE.

Take a cone FGH with base equal to the surface of the

frustum ,DABE and height equal to the perpendicular (CK)
from C on A O.

Then shall the cone FGH be equal to the difference between
the cone OAB and the rhombus ODCE.

Take (1) a cone LMIV with base equal to the su_ace of the
cone OAB, and height equal to CK,
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(2) a cone PQR with base equal to the surface of the cone

ODE and height equal to CK.

G H

£ C B

L p

"-.. / \
_ N Q _

Now, since the surfi_ce of the cone OAB is equal to the

surface of the cone ODE together with that of the thistum
DABE, we have, by the construction,

(base of LMN) = (base of FGH) + (base of PQR)
and, since the heights of the three cones are equal,

(cone LM_N) = (cone FGH) PQR).

But the cone LM5 r is equal to the cone OAB [Prop. 17],
and the cone PQR is equal to the rhombus ODCE [Prop. 18].

Therefore (cone OAB) = (cone FG H) + (rhombus ODCE),
and the proposition is proved.

Proposition _0.

If one of the two isosceles cones forming a rhombus be cut
by a plane parallel to the base and on the resulting circular
section a cone be de,_cribed having the same apex as the second

cone, and if the resulting rhombus be taken from the whole
rhombus, the remainder will be equal to the cone with base equal
to the surface of the portion of the cone between the parallel

planes a_wl with height equal to the perpendicular drawn from
the apex of the second* cone to the side of the first cone.

There is a slight error in Heiberg's translation "prioris coni" and in the

corr_ponding note, p. 93. The perpendicular is not drawn from the apex of
the cone which is cut by the plane but from the apex of the other.
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Let the rhombus be OACB, and let the cone OAB be cut

by a plane parallel to its base in the circle about DE as diameter.
With this circle as base and C as apex describe a cone, which
therefore with ODE forms the rhombus ODCE.

o F

D E G H

A --] R

K

C
M N

Take a cone FGII with base equal to the surface of the

frustum DABE and height equal to the perpendicular (CK)
from C on OA.

The cone FGH shall be equal to the difference between the
rhombi OACB, ODCE.

For take (1) a cone LM_N with base equal to the surface of
OAB and height equal to CK,

(2) a cone PQR. with base equal to the surface of ODE,

and height equal to CK.

Then, since the surface of OAB is equal to the surface of

ODE together with that of the frustum DABE, we have, by
construction,

(base of LM2g) -- (base of PQR) + (base of FGH),

and the three cones are of equal height;

therefore (cone ZMN) = (cone PQR) + (cone FGH).

But the cone LM2g is equal to the rhombus OACB, and the

cone PQR is equal to the rhombus ODCE [Prop. 18].

Hence the cone FGH is equal to the difference between the
two rhombi OACB, OD(.,'_:
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Proposition _1.

A regular polygon of an even number o/sides being inscribed
in a circle, as ABC...A'...C'JB'A, so that AA' is a diameter,

i/two ang_dar points next but one to each othvr, as B, B', be

joined, and the other lines parallel to BB' and joining pairs
o/ angular points be drawn, as CC', I)D'..., then

(BB" + CC' +...) : AA' = A'13 : BA.

Let ]BB', CC', DD',... meet AA' in F, G, H,... ; and let

CJB', DC',... be joined meeting AA' in K, Z .... respectively.

D
C

B E

A A'

B_

o"

Then clearly CB', DO;... are parallel to one another and to
AB.

Hence, by similar triangles,

BF : FA = B'F : FK

= CG : GK

=C'G : GL
,°*,.,°°o.°,

= E'I : IA' ;
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and, summing the antecedents and consequents respectively, we
have

(BB'+OC +...):AA'=BF:FA

= A'B: BA.

Proposition a2.

If a polygon be inscribed in a segment of a circle LAL' so
that all its _'ides excluding the base are eq_al and their number

even, as LK...A...K'L ', A beil_g the middle point of the segment,
and if the lines BB', CC',... parallel to the base LL' and joining
pairs of angular poi_tts be draw_, then

(BB' + CC' +... + LM) : AM = A'B : BA,

wDere M is tDe middle point of LL' and AA" is the diameter
through M.

o

i

I I' / i, Ij

D'

Joining CB', DC',...LK', as in the last proposition, and
supposing that they meet AM in P, Q.... R, while BB', CC', ....

KK' meet AM in F, G,.../7, we have, by similar triangles,
BF : FA = B'F : FP

= CG : PG

= C'G : GQ
o..o..° .....

=LM: RM;
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and, summing the antecedents and eonscquent_, we obtain

(BB' + CC' +... + LM) : AM = BF : FA

= A'B : BA.

Proposition _3.

Take a great circle ABC... of a sphere, and inscribe in it
a regular polygon whose sides are a multiple of four in number.
Let AA', MM" be diameters at righ_ angles and joining

opposite angular points of the polygon.
M

I' I

M'

Then, if the polygon and great circle revolve together about

the diameter AA', the angular points of the polygon, except A,
A', will describe circles on the surface of the sphere at right
angles to the diameter AA'. Also the sides of the polygon
will describe portions of conical surfaces, e.g. BC will describe

a surface forming part of a cone whose base is a circle about
UC' as diameter and whose apex is the point in which CB,
C'B' produced meet each other and the diameter AA'.

Comparing the hemisphere MAM' and that half of the
figure described by the revolution of the polygon which is

included in the hemisphere, we see that the surface of the
hemisphere and the surface of the inscribed figure have the
same boundaries in one plane (viz. the circle on MM" as
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diameter), the former surface entirely includes the latter, and

they are both concave in the same direction.

Therefore [Assumptions, 4] the surface of the hemisphere

is greater than that of the inscribed figure; and the same is
true of the other halves of the figures.

Hence the surface of the sphere is greater than the surface
described by the revolution of the polygon inscribed in the great
circle about the diameter of the great circle.

Proposition _4.

If a regular poly.qo_ AB...A'...B'A, the number of whose
sides is a multiple of four, be inscribed in a great circle of a

sphere, and if BB' subtending two sides be joined, and all the
other lines parallel to BB' and joining pairs of angular points
be drawn, then the surface of the figure inscribed in the sphere
by the recolution of the polygon about the diameter AA" is eq_al
to a circle the square of whose radius is equal to the rectangle

BA (BB" + CC' + ...).

The surface of the figure is made up of the surfaces of parts
of different cones.

M

\
I

'1I
I

I

Now the surface of the cone ABB' is equal to a circle whose

radius is _B-A. _BB'. [Prop. 14]
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The surface of the frustum BB'C'C is equal to a circle of

radius _/BC. ½(BB' + CC'), [Prop. 16]
and so on.

It follows, since BA = BC ..... that the whole surface is

equal to a circle whose radius is equal to

_/BA (BB' + CC" +... + MM' _- ... + YY').

Proposition 25.

The surface of the figure inscribed i1_a sphere as in the last
propositions, consisting of portions of conical surfaces, is less than
four times the greatest circle in the sphere.

Let AB...A'...B'A be a regular polygon inscribed in a
great circle, the number of its sides being a multiple of four.

M

M_

As before, let BB' be drawn subtending two sides, and
GG',... YY" parallel to BB'.

Let R be a circle such that the square of its radius is equal
to

AB (BB' + ffff' + ... + YY'),

so that the surface of the figure inscribed in the sphere is equal

to R. [Prop. 24]
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NOW

(BB' + CC' +... + YY') : AA' = A'B : AB, [Prop. 21]

whence AB (BB' + CC' +... + YY') = AA'. A'B.

Hence (radius of R)' = AA'. A'B

<AA _.

Therefore the surface of the inscribed figure, or the circle R,
is less than four times the circle AMA'M'.

Proposition $6.

The figure inscribed as above in a .v2here is equal [in volume]
to a cone whose base is a circle equal to the surface of the figure

inscribed in the sphere and whose height is equal to the
perpendicular drawn from the centre of the sphere to one side of
the polygon.

Suppose, as before, that AB...A'...B'A is the regular
polygon inscribed in a great circle, and let BB', CC', ... be

joined.

M

N'

With apex 0 construct cones whose bases are the circles
on BB', CC',... as diameters in planes perpendicular to AA'.

mX. 3
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Then OBAB' is a solid rhombus, and its volume is equal to
a cone whose base is equal to the surface of the cone ABB' and
whose height is equal to the perpendicular from 0 on AB

[Prop. 18]. Let the length of the perpendicular be p.

Again, if CB, C'B' produced meet in T, the portion of the

solid figure which is described by the revolution of the triangle
BOC about AA' is equal to the difference between the rhombi

OCTC' and OBTB', i.e. to a cone whose base is equal to the
surface of the frustum BB'C'C and whose height is p [Prop. 20].

Proceeding in this manner, and adding, we prove that, since
cones of equal height are to one another as their bases, the

volume of the solid of revolution is equal to a cone with height
p and base equal to the sum of the surfaces of the cone BAB',

the frustum BB'C'C, etc., i.e. a cone with height p and base
equal to the surface of the solid.

Proposition 27.

The figure inscribed in the sphere as before is less than

four times the cone whose base is equal to a great circle of
the sphere and whose t_ht is equal to the radius of the
sphere.

By Prop. 26 the volume of the solid figure is equal to a cone

whose base is equal to the surface of the solid and whose height
isp, the perpendicular from 0 on any side of the polygon. Let
R be such a cone.

Take also a cone S with base equal to the great circle, and
height equal to the radius, of the sphere.

Now, since the surface of the inscribed solid is less than four

times the great circle [Prop. 25], the base of the cone t/is less
than four times the base of the cone S.

Also the height (p) of R is less than the height of S.

Therefore the volume of R is less than four times that of S;

and the proposition is proved.
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Proposition _8.

Let a regular polygon, whose sides are a multiple of four in
number, be circumscribed about a great circle of a given
sphere, as AB...A'...B'A; and about the polygon describe
another circle, which will therefore have the same centre as the

great circle of the sphere. Let AA' bisect the polygon and
cut the sphere in a, a'.

M

A_ _ At
M"

If the great circle and the circumscribed polygon revolve
together about AA', the great circle will describe the surface
of a sphere, the angular points of the polygon except A, A' will

move round the surface of a larger sphere, the points of contact
of the sides of the polygon with the great circle of the inner
sphere will describe circles on that sphere in planes perpen-

dicular to AA', and the sides of the polygon themselves will
describe portions of conical surfaces The circumscribed f_ure
will thus be greater tlvan the ._phere itself.

Let any side, as BM, touch the inner circle in K, and let K'
be the point of contact of the circle with B'M'.

Then the circle described by the revolution of KK' about
AA' is the boundary in one plane of two surfaces

(1) the surface formed by the revolution of the circular
segment KaK', and

3--2
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(2) the surface formed by the revolution of the part
KB...A...B'K' of the polygon.

Now the second surface entirely includes the first, and they
are both concave in the _me direction ;

therefore [Assumptions, 4] the second surface is greater
than the first.

The same is true of the portion of the surface on the opposite
side of the circle on KK' as diameter.

Hence, adding, we see that the surface of the figure
circumscribed to the given sphere is greater than that of the

sphere itself.

Proposition _9.

In a figure circumscribed to a sphere in the mauner show_
i1_ the previous proposition the surface is equal to a circle the

square on u,hose radius is equal to AB(BB' + CC' + ...).

For the figure circumscribed to the sphere is inscribed ill a

larger sphere, and the proof of Prop. 24 applies.

Propolition 30.

The surface of a figure circumsc_'ibed as before about a sphere
is greater than four times the great circle of the sphere.

M

6 C

6'

MI
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Let AB...A'...B'A be the regular polygon of 4,n sides
which by its revolution about AA' describes the figure circum-
scribing the sphere of which area're' is a great circle. Suppose
an', AA' to be in one straight line.

Let R be a circle equal to the surface of the circumscribed
solid.

Now (BB' + CC' +...) : AA' = A'B : BA, [as in Prop. 21]

so that AB (BB' + CC' +...) -- AA'. A'B.

Hence (radius of R) = _ A'B [Prop. 29]

> A'B.

But A'B = 20P, where P is the point in which AB touches
the circle ama'm'.

Therefore (radius of R) > (diameter of circle area're') ;

whence R, and therefore the surface of the circumscribed solid,

is greater than four times the great circle of the given sphere.

Propomition 3 I.

The solid of revolution circumscribed as before abo_tt a sphere
is e_ual to a cone whose base is equal to the surface of the solid
and whose height is equal to the radius of the sphere.

The solid is, as before, a solid inscribed in a larger sphere ;
and, since the perpendicular on any side of the revolving polygon
is equal to the radius of the inner sphere, the proposition is
identical with Prop. 26.

Co_ The solid circumscribed about the smaller 8p_re is
greater than four times the cone whose base is a great circle

of the sphere and whose height is equal to the radius of the
sphere.

For, since the surface of the solid is greater than four times
the great circle of the inner sphere [Prop. 80], the cone whose
base is equal to the surface of the solid and whose height is the
radius of the sphere is greater than tbur times the cone of
the same height which has the great circle for base. [Lemma 1.]

Hence, by the proposition, the volume of the solid is greater
than four times the latter cone.
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Proposition 3_.

If a regular polygon with 4n sides be inscribed in a great
circle of a aphere, as ab...a'...b'a, and a similar polygon

AB...A'...B'A be described about the great circle, and if the
polygons revolve with the great circle about the diameters aa',
AA' respectively, so that they describe the surfaces of solid

figures inscribed in and circumscribed to the sphere respectively,
then

(1) the surfaces of the circumscribed and inscribed figures
are to one another in the duplicate ratio of their sides, and

(2) tt_ figures themselves [i.e. their volumes] are in the
triplicate ratio o/their sides.

(1) Let AA', aa' be in the same straight line, and let
MmOm'M' be a diameter at right angles to them.

M

£ - 0 u' Aa

bs i

M*

Join BB', CC',... and bb', _',... which will all be parallel
to one another and MM'.

Suppose R, S to be circles such that

R = (surface of circumscribed solid),

S = (surface of inscribed solid).
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Then (radius of R)" = AB (BB' + CC' + ...) [Prop. 29]

(radius of S) 2 = ab (bb' + cc' +...). [Prop. 24]

And, since the polygons axe similar, the rectangles in these
two equations are similar, and are therefore in the ratio of

AB _ : ab'.
Hence

(surface of circumscribed solid) : (surface of inscribed solid)
= AB l : ab_.

(2) Take a cone V whose base is the circle R and whose

height is equal to Oa, and a cone W whose base is the circle S

and whose height is equal to the perpendicular from 0 on ab,
which we will call p.

Then P-, W are respectively equal to the volumes of the

circumscribed and inscribed figures. [Prop_ 31, 26]

Now, since the polygons are similar,

AB :ab=Oa :p

= (height of cone V) : (height of cone W) ;

and, as shown above, the bases of the cones (the circles R, S)
are in the ratio of AB _ to ab2.

Therefore V : W = AB 3 : abs.

Propoldtion 33.

The surface of any sphere is equal to four times the greatest
circle in it.

Let C be a circle equal to four times the great circle.

Then, if C is not equal to the surface of the sphere, it must

either be less or greater.

I. Suppose C less than the surface of the sphere.

It is then possible to find two lines B, % of which B is the
greater, such that

B : 7 < (surface of sphere) : C. [Prop. 2]

Take such lines, and let _ be a mean proportional between
them.



_q0 ARCHIMEDES

Suppose similar regular polygons with 4n sides circum-
scribed about and inscribed in a great circle such that the ratio
of their sides is less than the ratio fl : 3. [Prop. 3]

M

A a 0 a, s A'

M'

Let the polygons with the circle revolve together about
a diameter common to all, describing solids of revolution as
before.

Then (surface of outer solid) : (surface of inner solid)

= (side of outer)' : (side of inner) _ [Prop. 32]

< (surface of sphere) : C, a re,levi.

But this is impossible, since the surface of the circum-
scribed solid is greater than that of the sphere [Prop. 28], while

the surface of the inscribed solid is less than C [Prop. 25].

Therefore C is not less than the surface of the sphere.

II. Suppose U greater than the surface of the sphere.

Take lines fl, % of which fl is the greater, such that

: _/< C : (surface of sphere).

Circumscribe and inscribe to the great circle similar regular

polygons, as before, such that their sides are in a ratio less than
that of j9 to 3, and suppose solids of revolution generated in the
usual manner.
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Then, in this case,

(surface of circumscribed solid) : (surface of inscribed solid)

< C : (surface of sphere).

But this is impossible, because the surface of the circum-
scribed solid is greater than C [Prop. 30], while the surface of
the inscribed solid is less than that of the sphere [Prop. 23].

Thus C is not greater than the surface of the sphere.

Therefore, since it is neither greater nor less, U is equal to
the surface of the sphere.

Proposition 34.

Any sphere is eqaal to four times the cone which has its base
equal to the greatest circle in, the sphere and its height equal

to the radius of the sphere.

Let the sphere be that of which area're' is a great circle.

If now the sphere is not equal to four times the cone
described, it is either greater or le_.

I. If possible, let the sphere he greater than four times the
coBe.

Suppose V to be a cone whose base is equal to four times

the great circle and whose height is equal to the radius of the
sphere.

Then, by hypothesis, the sphere is greater than V: and two
lines B, 7 can be found (of which f_ is the greater) such that

: 7 < (volume of sphere) : V.

Between B and 7 place two arithmetic means _, e.

As before, let similar regular polygons with sides 4o_ in
number be circumscribed about and inscribed in the great
circle, such that their sides are in a ratio less than B : $.

Imagine the diameter aa' of the circle to be in the same
straight line with a diameter of both polygorL% and imagine
the latter to revolve with the circle about aa', describing the
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surfaces of two solids of revolution. The volumes of these solids

are therefore in the triplicate ratio of their sides. [Prop. 32]

Thus (vol. of outer solid) : (vol. of inscribed solid)

< ff : 8s, by hypothesis,

< _ : 7, afortiori (since/3 : _ > ff : 8s)*,

< (volume of sphere) : V, afortiori.

But this is impossible, since the volume of thc circumscribed

M

m
S

A h'

* That $:V>_:8 _ is assumed by Archimedes. Eutocius proves the
property in his commentary as follows.

Take z such that fl : a = $ : x.
Thus _-_ : _=a-z :

and, since _>6, fl-$>8-x.

But, by hypothesis, fl - 6= $ - e.
Therefore 8 - ¢> 8 - x,

or x>_.

Again, suppose _ : z=z : y,
and, as before, we have 8- z>z- y,

so that, afortiori, _ - _> x - y.

Therefore • - 7 > x - y ;
and, since z>e, Y>'V-

Now, by hypothesis, _, _, x, y are in continued proportlon ;

therefore _ : _=_ : y

<_:7.
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solid is greater than that of the sphere [Prop. 28], while the
volume of the inscribed solid is less than V [Prop. 27].

Hence the sphere is not greater than Ir, or four times the
cone described in the enunciation.

II. If possible, let the sphere be less than V.

In this case we take/3, "t (B being the greater) such that

B:_/< V: (volume of sphere).

The rest of the construction and proof proceeding as before,
we have finally

(_olume of outer solid) : (volume of inscribed solid)

< V : (volume of sphere).

But this is impossible, because the volume of the outer
solid is greater than V [Prop. 31, Cor.], and the volume of the
inscribed solid is less than the volume of the sphere.

Hence the sphere is not less than V.

Since then the sphere is neither less nor greater than V, it
is equal to V, or to four times the cone described in the enun-
ciation.

COR. From what has been proved it follows that every
cylinder whose base is the greata_t circle in a sphere and whose

height is equal to the diameter of the sphere is _ of the sphere,
and its surface together with its bases is _ of the surface of the
sphere.

For the cylinder is three times the eone with the same
base and height [Eucl. xII. 10], i.e. six times the cone with
the same base and with height equal to the radius of the
sphere.

But the sphere is four times the latter cone [Prop. 34].
Therefore the cylinder is _ of the sphere.

Again, the surface of a cylinder (excluding the bases) is
equal to a circle whose radius is a mean proportional between

the height of the cylinder and the diameter of its base
[Prop. 13].
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In this case the height is equal to the diameter of the base
and therefore the circle is that whose radius is the diameter of

the sphere, or a circle equal to four times the great circle of
the sphere.

Therefore the surface of the cylinder with the bases is equal

to six times the great circle.

And the surface of the sphere is four times the great circle
_Prop. 33] ; whence

(surface of cylinder with bases) = ._. (surface of sphere).

Propoaltion 35.

If in a segment of a circle LAL" (where A is the middle

point of the arc) a polygon LK...A...K'L' be i,scribed of which
LL' is one side, while the other sides are 2n in number and all

equal, and if the polygon revolve with the segment about the
diameter AM, gene_'atiT_ga solid figure inscribed in a segment of

a sphere, then the surface of the i_cribed solid is equal to a
circle the square on whose radius is equal to the rectangle

AB(BB' +CC' +... + KK' +LL2' ) .

&

K _ K_

AS

The surface of the inscribed figure is made up of portions of
surfaces of cones.
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If we take these successively, the surface of the cone BAB"

is equal to a circle whose radius is

_A-B.._13B'. [Prop. 14]

The surface of the fralstum of a cone BCC'B" is equal to
a circle whose radius is

/ BB' + CC'
_/AB.- 2 ; [Prop. 16]

and so on.

Proceeding in this way and adding, we find, since circles
are to one another as the squares of their radii, that the
surface of the inscribed figure is equal to a circle whose radius
is

_/AB (BB" + CC' + ... + KK' + LL').

Proposition 36.

The _arface of the figure 5_sc_-ibed as before in the segme_t
of a sphere is less than that of the segv_'nt of the sphere.

This is clear, because the circular haze of the segment is a
common boundary of each of two surfaces, of which one, the

segment, includes the other, the solid, while both are concave
in the _me direction [Assumptions, 4].

Proposition 3V.

The surface of the solid figure inscribed in the segment of the
sphere by the revolution of LK...A...K'L' about AM is less than
a circle with radius equal to AL.

Let the diameter AM meet the circle of which LAL' is a

segment again in A'. Join A'B.

As in Prop. 35, the surface of the inscribed solid is equal to

a circle the square on whose radius is

AB (BB' + UC' +... + KK' + LM).
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But this rectangle = A'B. AM [Prop. 22]

< A'A. AM

<AL _.

A

B _ . S e

g _.t
A

Hence the surface of the inscribed solid is less than the
circle whose radius is AL.

Proposition 38.

The solid fig_re described as before in a segment of a sphere
less than a hemisphere, together with the cone whose base is the

base of the segment and whose apex is the centre of the sphere,
is equal to a cone whose base is equal to the surface of the

inscribed solid and whose height is equal to the perpendicular
from the centre of the sphere on any side of the polygon.

Let 0 be the centre of the sphere, and p thc length of the
perpendicular from 0 on AB.

Suppose cones described with 0 as apex, and with the
circles on BB', CC', ... as diameters as bases.

Then the rhombus OBAB' is equal to a conc whose base is

equal to the surface of the cone BAB', and whose height is p.

[Prop. 18]

Again, if CB, C'B' meet in T, the solid described by the
triangle BOG as the polygon revolves about A 0 is the difference
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between the rhombi OCTC' and OBTB', and is therefore equal

to a cone whose base is equal to the surface of the frustum
BCC'B' and whose height is p. [Prop. 20]

Similarly tbr the part of the solid described by the triangle

COD as the polygon revolves ; and so on.

T

C C'

K " K'

O

Hence, by addition, the solid figure inscribed in the segment

together with the cone OLL' is equal to a cone whose base is
the surface of the inscribed solid and whose height is p.

Corr. The cone whose base is a circle with radius equal to

AL and whose height is eTtal to the radius of the sphere is
greater than the s,m of the inscribed solid and the cone OLL'.

For, by the proposition, the inscribed solid together with
the cone OLL' is equal to a cone with base equal to the surface
of the solid and with height p.

This latter cone is less than a cone with height equal to OA

and with base equal to the circle whose radius is AL, because
the height p is less than OA, while the surface of the solid is
less than a circle with radius AL. [Prop. 37]

Proposition 39.

Let hal' be a segment of a great circle of a sphere, being less
than a semicircle. Let 0 be the centre of the sphere, and join

Ol, Ol'. Suppose a polygon circumscribed about the sector Olal'
such that its sides, excluding the two rudii, are 2n in number
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and all equal, as LK .... BA, AB',... K'Z'; and let OA be that
radius of the great circle which bisects the segment lal'.

The circle circumscribing the polygon will then have the

same centre 0 as the given great circle.

Now suppose the polygon and the two circles to revolve

together about OA. The two circles will describe spheres, the

A

0

angular points except A will describe circles on the outer
sphere, with diameters BB' etc., the points of contact of the
sides with the inner segment will describe circles on the inner

sphere, the sides themselves will describe the surfaces of cones
or frusta of cones, and the whole figure circumscribed to the

segment of the inner sphere by the revolution of the equal
sides of the polygon will have for its base the circle on LL"
as diameter.

The surface of the solid figure so circumscribed about the

sector of the sphere [excluding its base] will be greater than that

of the segment of the sphere whose base is the circle on ll' as
diameter.

For draw the tangents 1T, l'T' to the inner segment at l, l'.
These with the sides of the polygon will describe by their
revolution a solid whose surface is greater than that of the

segment [Assumptions, 4].

But the surface described by the revolution of 1T is less

than that described by the revolution of LT, since the angle TIL

is a right angle, and therefore LT > lT.

Hence, afortiori, the surface described by LK...A...K'Z'

is greater than that of the segment.
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Cos. The surface of the .figure so described about the sector

of the sphere is equal to a circle the square on whose radiu_
is equal to the rectangle

AB (BB' + CC' +... + KK' + ½LL').

For the circumscribed figure is inscribed in the outer sphere,

and the proof of Prop. 35 therefore applies.

Propolition 40.

The surface of the figure circumscribed to the sector as before
is greater than a _ircle whose radius is equal to al.

Let the diameter AaO meet the great circle and the circle

circumscribing the revolving polygon again in a', A'. Join
A'B, and let ON be dr_wn to N, the point of contact of AB
with the inner circle.

A

A'

Now, by Prop. 39, Cor., the surfaee of the solid figure
circumscribed to the sector O1Al' is equal to a circle the square

on whose radius is equal to the rectangle

But this rectangle is equal to A'B.AM [as in Prop 22].
H.A. 4
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Next, sinceAL',al"are parallel,the trianglesAM/,',aml"

aresimilar.And AL' > al';thereforeAM> am.

Also A'B ---20N = aa'.

Therefore A'B. AM > am. aa'

> al "s.

Hence the surface of the solid figure circumscribed to the

sector is greater than a circle whose radius is equal to al', or al.

CoR. 1. The volume of the figure circumscribed about the
sector together with the cone whose apex is 0 and base the circle

on LL' as diameter, is equal to the volume of a cone whose base
is equal to the surfa_ of the circumscribed figure and whose

height is ON.

For the figure is inscribed in the outer sphere which has the
same centre as the inner. Hence the proof of Prop. 38 applies.

COR. 2. The volume of the circ_mscribed fifure with the cone
OLL' is greater tt_an the cone whose base is a circle with radius

equal to al and whose t_ight is equal to the radius (Oa) of the
inner sphere.

For the volume of the figure with the cone OLL' is equal to

a cone whose base is equal to the surface of the figure and
whose height is equal to 0N.

And the surface of the figure is greater than a circle with

radius equal to a/ [Prop. 40], while the heights Oa, ON are

equal.

Proposition 41.

Let lal' be a segment of a great circle of a sphere which is
less.than a semicircle.

Suppose a polygon inscribed in the sector Olal' such that
the sides lk,.., ba, ab', ... l¢'l' are 2n in number and all equal.

Let a similar polygon be circumscribed about the sector so that
its sides are parallel to those of the first polygon; and draw
the circle circumscribing the outer polygon.

Now let the polygons and circles revolve together about
OaA, the radius bisecting the segment la/'.
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Then (1) the surfaces of the outer and inner solids of revolution
so described are in the ratio of AB 2 to ab_, and (2) their volumes
together with the correspondb_t cones with the same base and
with apex 0 in each case are as AB s to abs.

A

O

(1) For the surfaces arc equal to circles the squares on
whose radii are equal respectively to

LL'\

-2-)'
[Prop. 39, Cor.]

and ab(bb'+cc' +... +t_'k'+_). [Prop. 35]

But these rectangles are in the ratio of AB _ to ab_. Therefore
so arc the surfaces.

(2) Let OnN bc drawn perpendicular to ab and A B; and

suppose the circles which are equal to the surfaces of the outer
and inner solids of revolution to be denoted by S, s respectively.

Now the volume of the circumscribed solid together with

the cone OLL' is equal to a cone whose base is S and whose
height is ON [Prop. 40, Cor. 1].

And the volume of the inscribed figure with the cone Oll' is

equal to a cone with base s and height On [Prop. 38].

But S : s = AB _ : ab_,

and ON : On = AB : ab.

Therefore the volume of the circumscribed solid together with
the cone OLL' is to the volume of the inscribed solid together

with the cone Oll' as AB s is to abs [Lemma 5].
4 2
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Proposition 4_.

If lal' be a segment of a sphere less than a hemisphere a_d
Oa the radius perpendicular to the base of the segment, the
surface of the segment is equal to a circle whose radius is equal
to al.

Let R be a circle whose radius is equal to al. Then the
surface of the segment, which we will call S, must, if it be not

equal to R, be either greater or less than R.

A

o

I. Suppose, if possible, S > R.

Let lal' be a segment of a great circle which is less than a
semicircle. Join O1, Ol', and let similar polygons with 2n equal
sides be circumscribed and inscribed to the sector, as in the

previous propositions, but such that

(circumscribed polygon) : (inscribed polygon) < S : R.
[Prop. 6]

Let the polygons now revolve with the segment about OaA,

generating solids of revolution circumscribed and inscribed to
the segment of the sphere.

Then

(surface of outer solid) : (surface of inner solid)

= AB' : ab" [Prop. 41]

= (circumscribed polygon) : (inscribed polygon)

< S :/_, by hypothesis.

But the surface of the outer solid is greater than S [Prop. 39].
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Therefore the surface of the inner solid is greater than R ;
which is impossible, by Prop. 37.

II. Suppose, if possible, S < R.

In this case we circumscribe and inscribe polygons such that
their ratio is less than R : S; and we arrive at the result that

(surface of outer solid) : (surface of inner solid)
<R:S.

But the surface of the outer solid is greater than R [Prop. 40].
Therefore the surface of the inner solid is greater than S: which
is impossible [Prop. 36].

Hence, since S is neither greater nor le_ than R,
S=R.

Proposition 43.

Even if the segment of the sphere is greater than a hemisphere,

its surface is still equal to a circle whose radius is equal to al.

For let lal'a' be a great circle of the sphere, aa' being the
diameter perpendicular to ll'; and let

/a'l' be a segment less than a semi- a'

circle.

Then, by Prop. 42. the surface of

the segment laT of the sphere is
equal to a circle with radius equal to
(L'l.

Also the surface of the whole

sphere is equal to a circle with radius a
equal to a£ [Prop. 33].

But aa '_- a'l'= al s, and circles are to one another as the
square_ on their radii.

Therefore the surface of the segment la/', being the difference

between the surfaces of the sphere and of ht'l', is equal to a

circle with radius equal to al.
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Propo_Ition 44.

The volume of any sector of a sphere is equal to a cone whose

base is equal to the surface of the segment of the sphere included
in the sector, and whose height is equal to the radi_s of the
sphere.

Let R be a cone whose base is equal to the surface of" the

segment lal' of a sphere and whose height is equal to the radius
of the sphere ; and let S be the volume of the sector Olal'.

A

I. _, U

0

Then, if S is not equal to R, it must be either greater or
less.

I. Suppose, if possible, that S > R.

Find two straight lines/3, % of which B is the greater, such
that

B :,I<S : R;

and let $, e be two arithmetic means between B, %

Let /a/' be a segment of a great circle of the sphere.
Join O1, Ol', and let similar polygons with 2n equal sides be
circumscribed and inscribed to the sector of the circle as before,

but such that their sides are in a ratio less than /_:3.

[Prop. 4].



ON THE SPHERE AND CYLINDER I. 55

Then let the two polygons revolve with the segment about
OaA, generating two solids of revolution.

Denoting the volumes of these solids by V, v respectively,
we have

(F+cone OLL') : (v+cone Oll')=AB _ : ab' [Prop. 41]

</38 :_

< _ : ,y, afortiori*,

< S : R, by hypothesis.

Now (V+ cone OLL') >S.

Therefore also (v + cone Oll')> R.

But this is impossible, by Prop. 38, Cor. combined with Prop._
42, 43.

Hence S _ R.

II. Suppose, if possible, that S < R.

In this case we take/_, 7 such that

/_:7<R:S,

and the rest of the construction proceeds as before.

We thus obtain the relation

(V+ cone OLL') :(v + cone Oll') < R : S.

Now (v + cone Oll')< S.

Therefore ( V* cone OLL') < .R,

which is impossible, by Prop. 40, Cor. 2 combined with Prop._.
42, 43.

Since then S is neither greater nor less than R,

S=R.

Cf. note on Prop. 34, p. 42..
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BOOK II.

"A_CHIMSDES to Dositheus greeting.

On a former occasion you asked me to write out the proof_ of
the problems the enunciations of which I had myself sent to

Conon. In point of fact they depend for the most part on thc
theorems of which I have already sent you the demonstrations,
namely (1) that the surface of any sphere is four times the

greatest circle in the sphere, (2) that the surface of any
segment of a sphere is equal to a circle whose radius is equal

to the straight line drawn from the vertex of the segment to
the circumference of its base, (3) that the cylinder whose base
is the greatest circle in any sphere and whose height is equal

to the diameter of the sphere is itself in magnitude half as
large again as the sphere, while its surface [including the two

bases] is half as large again as the surface of the sphere, and
(4) that any solid sector is equal to a cone whose base is the
circle which is equal to the surface of the segment of the sphere

included in the sector, and whose height is equal to the radius
of the sphere. Such then of the theorems and problems as
depend on these theorems I have written out in the book

which I send herewith; those which are discovered by means
of a different sort of investigation, those namely which relate

to spirals and the conoids, I will endeavour to send you soon.



ON THE SPHERE AND CYLINDER II. 57

The first of the problems was as follows: G-iven a sphere, to

fi_WZa plane area equal to the surface of the sphere.
The solution of this is obvious from the theorems aforesaid.

For four times the greatest circle in the sphere is both a plane
area and equal to the surface of the sphere.

The second problem was the following."

Proposition 1. (Problem.)

Given a cone or a cylinder, to find a sphere equal to the cone

or to the cylinder.

If V be the given cone or cylinder, we can make a cylinder
equal to ,_V. Let this cylinder be the cylinder whose base
is the circle on AB as diameter and whose height is OD.

Now, if we could make another cylinder, equal to the
cylinder (OD) but such that its height is equal to the diameter

of its base, the problem would be solved, because this latter
cylinder would be equal to _V, and the sphere whose diameter
is equal to the height (or to the diameter of the base) of the

same cylinder would then be the sphere required [I. 34, Cor.].

O

Q
I
I

I
Suppose the problem solved, and let the cylinder (CG) he

equal to the cylinder (017), while EF, the diameter of the base,

is equal to the height CG.
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Then, since in equal cylinders the heights and bases are

reciprocally proportional,

AB" : EF'= CG : OD

= EF : OD .................. (1).

Suppose M2¢"to be such a line that

EF _=-A B. MN ...................... (2).

Hence AB : EF = EF : MN,

and, combining (1) and (2), we have

AB : M]_r = EF : OD,

or AB : EF= MI_r : OD.

Therefore AB : EF = EF : MN = MIV : OD,

and EF, MN are two mean proportionals between AB, OD.

The synthesis of the problem is therefore as follows. Take
two mean proportionals EF, MN between AB and OD, and

describe a cylinder whose base is a circle on EF as diameter
and whose height CG is equal to EF.

Then, since

AB : EF = EF : M]_T= MN : OD,

EF _= AB.MN,

and therefore AB "_: EF" = AB : Mi'_"

=EF: OD

=CG : OD;

whence the bases of the two cylinders (OD), (CG) are recipro-
cally proportional to their heights.

Therefore the cylinders are equal, and it follows that

cylinder (CG) = _ V.

The sphere on EF as diameter is therefore the sphere
required, being equal to V.
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Proposition a.

If BAB' be a segment of a .sphere, BB' a diameter of the
base of the segment, and 0 the centre of the sphere, and if AA'
be the diameter of the sphere bisecting BB' in M, then the volume

of the segment is equal to that of a cone whose base is the same
as that of the seyme_zt and whose height ,is h, where

h : AM = OA' + A'M : A'M.

Measure MII along MA equal to h, and MH' along MA'
equal to h', where

h' : A'M = OA + A M : A 11L

Suppose the three cones constructed which have O, H
H' for their apiccs and the base (BB') of thc segment for their
common base. Join AB, A'B.

Let C be a cone whose base i_ equal to the surface of the

segment BAB' of the sphere, i.e. to a circle with radius equal
to AB [I. 42], and whose height is equal to OA.

Then the cone C is equal to the solid sector OBAB" [I. 44].

Now, since HM : ilia = OA" + A'M : A'M,

dividendo, HA : AM = OA : A'M,

and, alternately, HA : AO = AM : MA',

so that

HO : 0.4 = AA' : A'M

= AB t : BM _

= (base of cone C) : (circle on BB' as diameter).
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But 0A is equal to the height of the cone C; therefore, since
cones are equal if their bases and heights are reciprocally

proportional, it follows that the cone C (or the solid sector
0BAff) is equal to a cone whose base is the circle on BB _ as
diameter and whose height is equal to OH.

And this latter cone is equal to the sum of two othem

having the same base and with heights OM, MH, i.e. to the
solid rhombus OBHB'.

Hence the sector OBAB' is equal to the rhombus OBHB _.

Taking away the common part, the cone OBB',

the segment BA B'= the cone HBB'.

Similarly, by the same method, we can prove that

the segment BA'B" = the cone H'B.B'.

Alternatwe proof of the latter property.

Suppose D to be a cone whose base is equal to the surface
of the whole sphere and whose height is equal to OA.

Thus D is equal to the volume of the sphere. [I. 33, 34]

Now, since OA' + A'M : A'M = HM : MA,

dividendo and alternando, as before,

OA : AH = A'M : MA.

Again, since H'M : MA' = OA + AM : AM,
H'A" : OA = A'M : MA

-- OA : AH, from above.

Compone'ndo, It'0 : OA = OH : ttA .................. (1).

Alternately, H'O : OH = OA : AH .................. (2),

and, componendo, HH' : HO--- OH : HA,

= H'O : OA, fl'om (1),

whence HH'. OA = H'O. OH .................. (3).

Next, since H'O : OH = OA : AH, by (2),

= A'M : MA,

(H'O + OH)" : H'O. OH = (A'M + .MA) _ : A'M. MA,
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whence, by means of (3),

HH" : HH'. OA = AA _ : A'M. MA,

or HH' : OA = AA'" : BM _.

Now the cone D, which is equal to the sphere, has for its base

a circle whose radius is equal to AA', and for its height a line
equal to OA.

Hence this cone D is equal to a cone whose base is the circle

on BB' as diameter and whose height is equal to HH' :

therefore the cone/9 = the rhombus HBH'B',

or the rhombus HBH'B'= the sphere.

But the segment BAB' = the cone HBB' ;

therefore the remaflling segment BA'B'= the cone H']3B'.

CoR. The segment BAB' is to a co_e with the same base and
equal height in the ratio of OA' + A'M to A'M.

Proposition 3. (Problem.)

To cut a given sphere by a plane so that the surfaces of the
segments may have to one a_tother a given ratio.

Suppose the problem solved. Let AA' be a diameter of a

great circle of the sphere, and suppose that a plane perpendicular
to AA' cuts the plane of the great circle in the straight

line BB', and AA" in M, and that it divides the sphere so that
the surface of the segment BAB' has to the surface of the

segment BA'B' the given ratio.
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Now these surfaces are respectively equal to circles with

radii equal to AB, A'B [I. 42, 43].

Hence the ratio AB" : A'B" is equal to the given ratio, i.e.

AM is to MA' in the given ratio.

Accordingly the synthesis proceeds as follows.

If H : K be the given ratio, divide AA' in M so that
AM : MA'= H: K.

Then AM : MA'= AB _ : A'B 2

= (circle with radius AB) : (circle with radins A'B)

= (surface of segment BAB') : (surJKce of segment BA'B').

Thus the ratio of the surfaces of the scgmcnts is equal to
the ratio H :/t'.

Proposition 4. (Problem.)

_b cut a given sp]_ere by a plane so that the vol_mes of the
segmen_ are to one another in a given ratio.

Suppose the problem solved, and let the required plane cut
the great circle ABA' at right angles in the hne BB'. Let
AA' be that diameter of the great circle which bisects BB' at

right angles (in M), and let 0 be the centre of the sphere.

s o
Hs

Take H on OA produced, and H' on OA' produced, such
that

OA' + A'M : A'M = HM : IDA,. ............ (1),

and OA + AM : AM-- H'M : MA' . ............ (2).

Join BH, B'H, BH', B'H'.
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Then the cones ItBB', H'BB" are respectively equal to the

segments BAB', BA'B' of the sphere [Prop. 2].

Hence the ratio of the cones, and therefore of their altitudes,

is given, i.e.

HM : H'M = the given ratio ............... (3).

We have now three equations (1), (2). (3), in which there
appear three as yet undetermined points 3I, H, It'; and it is

first necessary to find, by means of them, another equation in
which only one of these points (M) appears, i.e. we havc, so to
speak, to eliminate H, H'.

Now, from (3), it is clear that HH': H'M is also a given
ratio; and Archimedes' method of" elimination is, first, to find
value_ for each of the ratios A'H' : H'M and HH' : H'A" which

are alike independcnt of H, H', and then, secondly, to equate
the ratio compounded of these two ratios to the known value
of the ratio HH': H'M.

(a) To find such a value for A'11': H'M.

It is at once clear from equation (2) above that

A'H' : H'M = OA : OA + AM ............. (4).

(b) To find such a value for HH': A'H'.

From (1) we derive

A'M : MA = OA' + A'M : ttM

= OA': AH ..................... (5);

and, from (2), A'M:MA=H'M:OA+AM

= A'H': OA ..................... (6).
g t

Thus HA : AO = OA': A H,

whence OH : OA' = OH': A'11',

or OH : OH'= OA' : A'H'.

It follows that

11H': OH'= OH' : A'H',

or HH'. H'A' = OH'.

Therefore Htt' : H'A'= OH '_ : H'A"

= AA 'z : A'M s, by means of (6)
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(c) To express the ratios A'H' :H'M and HH' : H'M more

simply we make the following construction. Produce OA to D
so that OA = AD. (D will lie beyond H, for A'M > MA, and

therefore, by (5), OA >AH.)

Then A'H' : H'M = OA : OA + AM

= AD • DM ..................... (7).
Now divide AD at E so that

HI]' : H'M = AD : DE .................. (8).

Thus, using equations (8), (7) and the value of HH':H'A'
above found, we have

AD : DE = HH' : H'M

= (HH': H'A'). (A'H': H'M)

= (AA'g:A'M ") .(AD: DM).

But AD : DE = (DM : DE). (AD : DM).

Therefore MD : DE -- AA "_: A'M 2................. (9).

And D is given, since AD-- OA. Also AD : DE (being equal

to HH' : H'M) is a given ratio. Therefore DE is given.

Hence the problem reduces itself to the problen_ of dividing
A'D into two parts at M so that

MD : (a given length) = (a given area) : A'M".

Archimedes adds: "If the problem is propounded in this

general form, it requires a _wptap6_ [i.e. it is necessary to

investigate the limits of possibility], but, if there be added the
conditions subsisting in the present case, it does not require a
8topta l_¢;."

In the present ease the problem is:

Given a straight line A'A produced to D so that A'A -_ 2AD,

and given a point E on AD, to cut AA' in a poin_ M so that
AA" : A'M 2= MD : DE.

"And the analysis and synthesis of both problems will be

given at the end*."

The synthesis of the main problem will be as follows. Let

R : S be the given ratio, R being less than S. AA' being a

• See the note following this proposition,
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diameter of a great circle, and 0 the centre, produce OA to 1)
so that OA = AD, and divide AD in E so that

AE: ED=R : S.

Then cut AA' in M so that

MD : DE = AA" : A'M'.

Through M erect a plane perpendicular to AA'; this plane
will then divide the sphere into segments which will be to one
another as R to S.

Take H on A'A produced, and H' on AA" produced, so that

OA' + A'M : A'M = HM : MA ............... (1),

OA + AM : AM = H'M : MA'. ........... (2).
We have then to show that

HM : MH'= .R : S, or AE : ED.

(a) We first find the value of HH' : H'A' as follows.

As was shown in the analysis (b),

HH'. H'A' = OH '_,

or HH' : H'A'= OH '_ : H'A '_

= AA "_: A'M '_

= MD : DE, by construction.

(B) Next we have

H'A' : H'M = OA : OA + AM

= AD : DM.

Therefore HH' : H'M = (HH' : H'A'). (H'A' : H'M)

= (M/) : DE). (AD : DM)

= AD : DE,
whence HM : MH'= AE : ED

--R:S. Q, E. D.

Note. The solution of the subsidiary problem to which the

original problem of Prop. 4 is reduced, and of which Archimedes

promises a discussion, is given in a highly interesting and
important note by Eutocius, who introduces the subject with
the following explanation.

n.A. 5
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"He [Archimedes] promised to give a solution of this
problem at the end, but we do not find the promise kept in any
of the copies. Hence we find that Dionysodorus too failed to

light upon the promised discussion and, being unable to grapple
with the omitted lemma, approached the original problem in a
different way, which I shall describe later. Diocles also ex-
pressed in his work _rep'L_ruplovthe opinion that Archimedes

made the promise but did not perform it, and tried to supply
the omission himself. His attempt I shall also give in its
order. It will however be seen to have no relation to the

omitted discussion but to give, like Dionysodorus, a construction
arrived at by a different method of proof. On the other hand,
as the result of unremitting and extensive research, I found in

a certain old book some theorems discussed which, although the
reverse of clear owing to errors and in many ways faulty as
regards the figures, nevertheless gave the substance of what I

sought, and moreover to some extent kept to the Doric dialect
affected by Archimedes, while they retained the names familiar in

old usage, the parabola being called a section of a right-angled
cone, and the hyperbola a section of an obtuse-angled cone;
whence I was led to consider whether these theorems might

not in fact be what he promised he would give at the end. For
this reason I paid them the closer attention, and, after finding
great difficulty with the actual text owing to the multitude of

the mistakes above referred to, I made out tile sense gradually
and now proceed to set it out, as well as I can, in more familiar
and clearer language. And first the theorem will be treated

generally, in order that what Archimedes says about the limits
of possibility may be made clear; after which there will follow

the special application to the conditions stated in his analysis
of the problem."

The investigation which follows may be thus reproduced.
The general problem is:

Given two straigh$ lines AB, AO and an area D, to divide
AB at M so titus

AM : AC = D : MB _.
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Analysis.

Suppose M found, and suppose AC placed at right angles to
AB. Join CM and produce it. Draw EB_V through B parallel
to A C meeting CM in IV, and through C draw CHE parallel to

AB meeting EBN in E. Complete the parallelogram CESTF,
and through M draw IOMH parallel to A C meeting F2¢"in P.

Measure EL along EN so that

CE. EL (or AB. EL) = D. i P\ //_.. N
Then, by hypothesis, \\ _ iL4AM : AC = CE. EL : MB _.

And

AM : AC=CE : E:V, Ai/ a

by similar triangles,
¢ H E

= CE. EL :EL. EN.

It follows that P,¥= = 3IB "_= EL. EN.

Hence, if a parabola be described with vertex E, axis EN, and
parameter equal to EL, it will pass through P; and it will be

given in position, since EL is given.

Therefore P lies on a given parabola.

Next, since the rectangles FH, AE are equal,

FP. PH = A B. BE.

Hence, if a rectangular hyperbola be described with CE, CF
,_ asymptotes and passing through B, it will pass through P.
And the hyperbola is given in position.

Therefore P lies on a given hyperbola.

Thus P is determined as the intersection of the parabola

and hyperbola. And since P is thus given, M is also given.

6_op_pJ_.

Now, since AM : AC = D : MB',

AM. MB" = A C. JD.

But A C. D is given, and it will be proved later that the ra ,_mum
value of AM. MB" is that which it assumes when BM = 2AM.

5--2
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Hence it is a necessary condition of the possibility of a

solution that AC. D must not be greater than _AB. (]AB) 2, oq"
_AB'.

Synthesis.

If 0 be such a point on AB that BO = 2A0, we have seen

that, in order that the solution may be possible,

AC.D $ AO. OB'.

Thus AC. D is eithcr equal to, or less than, AO. OB _.

(1) If AC.D = AO. OB 2,then the point 0 itself solves the
problem.

(2) Let AC. D be less than A O. OB _.

Place AC at right angles to AB. Join CO, and produce it
to R. Draw EBR through B parallcl to AC meeting CO in R,
and through 0 draw CE parallel

to AB meeting EBR in E. Com- F Q Q, R

plete the parallelogram CERF, _ _/_and through 0 draw QOK parallel o P N

to A C meeting FR in Q and CE

in K. o _ _
Then, since A _-- a

AO. D < AO. OB',
0 K H E

measure RQ' along/_Q so that

AC. D = AO. Q'R',

or AO : AC = D : Q'R'.

Measure EL along ER so that

D = CE. EL (or AB. EL).

Now, since AO : AC = D : Q'R', by hypothesis,

= CE. EL : Q'I_',

and A O : A C = OE : ER, by similar triangles,

=CE.EL : EL.ER,
it follows that

Q'.R" = EL. ER.
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Describe a parabola with vertex E, axis ER, and parameter
equal to EL. This parabola will then pass through Q'.

Again, feet. FK-- feet. AE,

or FQ. QK = A B. BE ;

and, if we describe a rectangular hyperbola with asymptotes

CE, CF and passing through B, it will also pass through Q.

Let the parabola and hyperbola intersect at P, and through
P draw PMH parallel to AC meeting AB in M and CE

ill H, and GPN parallel to AB meeting CF in G and ER
in _T.

Then shall M be the required point of division.

Since PG. PH = AB. BE,

feet. GM =rect. ME,

and therefore CMN is a straight line.

Thus AB. BE = lOG. PH = AM. EN ............ (1).

Again, by the property of the parabola,

p_T_ = EL. EIV,

or .,lIB 2= EL. EN ....................... (2).

From (1) and (2)

AM : EL = AB. BE : MB _,

or AM.AB : AB.EL = AB. AC : MB'.

Alternately,

AM.AB : AB.AC= AB.EL : MB _,

or AM : AC = D : MB'.

Proof of _op_aF_.

It remains to be proved that, if AB be divided at 0 so that

BO = 2AO, tha_ AO. OB _ is the maximum value of AM.MB _,

or AO. OB _ > AM.MB',

where M is any point on AB other than O.
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Suppose that AO : AC = CE. EL' : OB',
so that A O. OB" = CE. EL'. A C.

Join CO, and produce it to N;

draw EBN through B parallel
to AC, and complete the paral-

lelogram CENF.

Through 0 draw .POH

parallel to AC meeting FAr
in P and CE in H.

With vertex E, axis EAr,

and parameter EL', describe F p,
a parabola. This will pass
through P, as shown in the

analysis above, and beyond P G R
will meet the diameter CF of

the parabola in some point. A s

Next draw a rectangu]ar _ _// _"_%....
h)Terbola with asymptotes CE,

CF and passing through B. c H K v
This hyperbola will also pass
through P, as shown in the

analysis.
Produce NE to T so that

TE = EN. Join TP meeting
CE in ]7, and produce it to
meet CF in W. Thus TP will

touch the parabola at P.

Then, since BO = 2A O,

TP = 2P W.

And TP = 2P K

Therefore P W -- P Y.

Since, then, WYbetween the asymptotes is bisected at P, the
point where it meets the hyperbola,

WY is a tangent to the hyperbola.

Hence the hyperbola and parubola, having a common tangent
at P, touch one another at P.
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Now take any point M on AB, and through M draw QMK

parallel to AC meeting the hyperbola in Q and CE in K.
Lastly, draw GqQR through Q parallel to AB meeting CF in G,

the parabola in q, and E_V in R.

Then, since, by the property of the hyperbola, the rectangles

GK, AE are equal, CMR is a straight line.

By the property of the parabola,

qR_= EL'.ER,

so that QR _ < EL'. ER.

Suppose QR _= EL. ER,

and we have AM : AC = CE : ER

= CE. EL : EL. ER

= CE. EL : QR"

= CE.EL : MB',

or AM. 'liB _ = CE. EL. A C.

Therefore AM. MB _< CE. EL'. AC

< A O. OB'.

If AC. D < AO. OB 2, there are two solutions because there

will be two points of intersection between the parabola and the

hyperbola.

For, if we draw with vertex E and axis EIV a parabola

whose parameter is equal to EL, the parabola will pass through
the point Q (see the last figure) ; and, since the parabola meets
the diameter CF beyond Q, it must meet the hyperbola again
(which has CF for its asymptote).

[If we put AB=a, BM=x, AC=c, and D=b *, the pro-
portion

AM: AC=D : MB*

is Men to be equivalent to the equation

x' (a - x) = b'c,

being a cub/c equation with the term containing x omitted.

Now suppose Eh r, EG to be axes of coordinates, E2_ being
the axis of y.
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Then the parabola used in the above solution is the
parabola

b_

t_

and the rectangular hyperbola is

y (a - x) -- ac.

Thus the solution of the cubic equation and the conditions
under which there are no positive solutions, or one, or two

positive solutions are obtained by the use of the two conics.]

[For the sake of completeness, and for their intrinsic interest,

the solutions of the original problem in Prop. 4 given by
Dionysodorus and Diocles are here appended.

Dionysodorus' solution.

Let AA' be a diameter of the given sphere. It is required

to find a plane cutting AA" at right angles (in a point M,
suppose) so that the segments into which the sphere is divided
are in a given ratio, as CD : DE.

Produce A'A to F so that AF= OA, where 0 is the centre
of the sphere.

. K I

P R

K B

F A A' G

B'

D

C _ E

Draw AH perpendicular to AA' and of such length that

FA : AIt= CE : ED,
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and produce All to K so that

AK _= FA. All ...................... (_).

With vertex F, axis FA, and parameter equal to All
describe a parabola This will pass through K, by the equa-
tion (a).

Draw A'K' parallel to AK and meeting the parabola in K';

and with A'F, A'K" as asymptotes describe a rectangular
h)Terbola passing through II. This hyperbola will meet the
parabola at some point, as P, between K and K'.

Draw PM perpendicular to AA' meeting the great circle in
B, B', and from H, P draw IIL, PR both parallel to AA" and
meeting A'K" in L, R respectively.

Then, by the property of the hyperbola,

PR..PM = A H. HI,

,.e. PM. MA' = ttA. AA',

or PM : AH= AA' : A'M,

and PM _ : AH _= AA" : A'M _.

Also, by the property of the parabola,

PM _ = FM.Att,

i.e. FM : PM = PM : All,

or FM : AH-- PM" : AH _

= AA '_ : A'_F, from above.

Thus, since circles are to one another as the squares of their
radii, the cone whose base is the circle with A'M as radius and

whose height is equal to FM, and the cone whose base is the
circle with AA' as radius and whose height is equal to All,
have their bases and heights reciprocally proportional.

Hence the cones are equal ; i.e., if we denote the first cone

by :he symbol c (A'M), FM, and so on,

c (A'M), FM = c (AA'), All.

Now c (AA'), FA : c (AA'), AH = FA : All

= CE : ED, by construction.
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Therefore

c (AA'), FA : c (A'M), FM = CE : ED ........ (8).

But (1) c (AA'), FA = the sphere. [I. 34]

(2) c (A'M), FM can be proved equal to the segment of
the sphere whose vertex is A' and height A'M.

For take G on AA' produced such that

GM : MA' = FM : MA

= OA + AM : AM.

Then the cone GBB' is equal to the segment A'BB' [Prop. 2].

And FM : MG = A M : MA', by hypothesis,

= BM _ : A'M I.
Therefore

(circle with tad. BM) : (circle with rad. A'M)

= FM : MG,

so that c (A'M), FM -- c (BM), MG

= the segment A'BB'.

We have therefore, from the equation (B) above,

(the sphere) : (segmt. A'BB')-- CE : ED,

whence (segmt. ABB') : (segmt. A'BB')= CD : DE.

Diocles' solution.

Diocles starts, like Archimedes, from the property, proved in
Prop. 2, that, if the plane of section cut a diameter AA' of the

sphere at right angles in M, and if H, H' be taken on OA, OA'
produced respectively so that

OA' + A'M • A'M = HM : MA,

OA + AM : AM = H'M : MA',

then the cones HBB', H'BB" are respectively equal to the
segments ABB', A'BB'.
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Then, drawing the inference that
HA : AM = OA' : A'M,

H'A' : A'M = OA : AM,

H A A* Ht

he proceeds to state the problem in the following form, slightly

generalising it by the substitution of any given straight line for
OA or OA':

GiveT_a straight line AA', its extremities A, A', a ratio C : D.

and another straight llne as AK, to divide AA' at M and to .find
two points H, H' on A'A a_,d AA' produced respectively so that

the following relations may hold simultaneously,

C : D = ttM : MH') ................ (a),
HA : AM = AK : A'M _ ................ (B),

H'A' : A'M= AK : AM ) ............... (7).

Analy6is.

Suppose the problem soh'ed and the points M, H, H' all
tbund.

Place AK at right angles to AA', and draw A'K' parallel
and equal to AK. Join KM, K'M, and produce them to meet
K'A', KA respectively in E, F. Join KK', draw EG through

E parallel to A'A meeting KF in G, and through M draw QM_hr
parallel to AK meeting EG in Q and KK' in N.

Now HA : AM = A'K' : A'M, by (/3),

--FA : AM, by similar triangles,
whence HA = FA.

Similarly H'A' = A'E.
Next,
FA + A M : A'K' + A'M = A M : A'M

= AK + AM : EA' + A'M, by similar triangles.
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Therefore

(FA + AM). (EA' + A'M) = (KA + AM). (K'A' + A'M).

Take AR along AH and A'R' along A'H' such that

AR = A'R" = AK.

Then, since FA + AM = HM, EA' + A'M = MH', we have

HM. MH' = RM. M]_'. ................ (3).

(Thus, if/_ falls between A and H, R' falls on the side of H'

remote from A', and vice versa.)

F

Now C : D = HM : MH', by hypothesis,
= HM. MH' : MH '_

= RM. MR' : MH '_, by (8).

Measure MV along MN so that MV= A'M. Join A'V and

produce it both ways. Draw RP, R'P' perpendicular to RR'
meeting A'Vproduced in P, P' respectively. Then, the angle

MA'V being half a right angle, PP' is given in position, and,
since R,//' axe given, so are zP, P'.

And, by parallels,
P'V: PV=R'M:MR.
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Therefore PV. P'V: PV 2= RM. MR' : RM 2.

But P V _ = 2RM _.

Therefore PV. P' V = 2RM. MR'.

And it was sho_m that

RM. MR' : MH'2 = C : D.

Hence PV.P'V : MH'2= 2C : D.

But MH' = A'M + A'E = VM + MQ = QV.

Theretbre QV _ : P V. P'V = D : 2C, a given ratio.

Thus, if we take a line p such that

D : 2C=p : PP'_',

and if we describe an ellipse with PP' as a diameter and p as
the corresponding parameter [= DD'_/PP ' in the ordinary
notation of geometrical conics], and such that the ordinates to

PP' are inclined to it at an angle equal to half a right angle,
i.e. are parallel to QV or AK, then the ellipse will pass
through Q.

Hence Q lies on an ellipse given in position.

Again, since EK is a diagonal of the parallelogram GK',

GQ. QN = AA'. A'K'.

If therefore a rectangular hyperbola bc described with KG,
KK" as asymptotes and passing through A', it will also pass

through Q.

Hence Q lie_ on a given rectangular h)Terbola_

Thus Q is determined as the intersection of a given ellipse

* There is a mistake m the Greek text here which seems to have escaped the

notice of all the editors up to the present. The words are _ ¢_0a_'oL_ow/_v, d'_
r_va _rpS_r_}_&_Xa_/a_ r_ r,o_r_ r_v TT 7rp5__d_X*/vr,v¢i_ r_v4, Le.(with
the lettering above) "If we take a length p such that D : 2C = PP' : p." This
cannot be right, because we should then have

QV 2 : PV. P'V = PP' : p,

whereas the two latter terms should be reversed, the correct property of the
ellipse being

QV _ : PV.P'V=p : PP'. [Apollonius I. 21]

The mistake would appear to have originated as far back as Eutocius, but I
think that Eutocius is more hkely to have mado the slip than Dioeles himself,

because any inteLl/gent mathematician would be more likely to make such a slip
in writing out another man's work than to overlook it if made by another.
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and a given hyperbola,and is thereforegiven. Thus M is

given,and H, H' can atoncebe found.

Synthesis.

Place AA', AK at right angles, draw A'K' parallel and

equal to AK, and join KK'.

Make AR (measured along A'A produced) and A'R'
(measured along AA' produced) each equal to AK, and

through R, R' draw perpendiculars to RR'.

Then through A' draw PP' making an angle (AA'P) with

AA' equal to half a right angle and meeting the perpendiculars
just drawn in P, _P' respectively.

Take a length p such that

D : 2C=p : PP'_,

and with PP' as diameter and p as the corresponding parameter

describe an ellipse such that the ordinates to P1 _' are inclined
to it at an angle equal to AA'P, i.e. arc parallel to AK.

With asymptotes KA, KK' draw a rectangaflar hyperbola

passing through A'.

Let the hyperbola and ellipse meet in Q, and from Q draw
QMV.N" perpendicular to AA' meeting AA' in M, _PP' in V
and KK' in N. Also draw GQE parallel to AA' meeting AK,

A'K" respectively in G, E.

Produce KA, K'M to meet in F.

Then, from the property of the hyperbola,

GQ. QN= AA'. A'K',

and, since these rectangles are equal, KME is a straight line.

Measure AH along AR equal to AF, and A'H' along A'R'
equal to A'E.

From the property of the ellipse,

QV _ : PV. P'V=p : PP'

=D:2C.

" Here too the Greek text repeats the same error as that noted on p. 77.
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And, by parallels,

P V : P'V= RM : R'M,

or PV.P'V : P'V_= RM. MR ' : R'M',

while P'V*=2R'M 2, since the angle RA'P is half a righ_
angle.

Therefore P V. P' V= 2RM. MR',

whence Q V* : 2RM. MR'= D : 2C.

But Q V = EA' + A'M = MH'.

Therefore RM. MR': MH_= C : D.

Again, by similar triangles,

FA + AM : K'A' + A'M= AM : A'M

= KA + AM : EA' + A'M.
Therefore

(FA + AM).(EA' + A'M)=(KA + AM).(K'A" + A'M)

or HM. MH'= RM. MR'.

It follows that

HM. MH" :MH_= C :D,

or HM : MII'= C : D ........................ (a).

Also HA : AM= FA : AM,

= A'K' : A'M, by similar

triangles... (B),
and H'A" : A 'M = EA' : A'M

= AK • AM ................... (7).

Hence the points M, It, H' satisfy the three given

relations.]

Proposition 5. (Problem.)

To construct a segment of a sphere similar to one segment
and equal in volume to another.

Let ABB' be one segment whose vertex is A and whose
base is the circle on BB" as diameter ; and let DEF be another

segment whose vertex is D and whose base is the circle on EF
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as diameter. Let AA', DD' be diameters of the great circles
passing through BB', EF respectively, and let 0, C be the
respective centres of the spheres.

Suppose it required to draw a segment similar to DEF and
equal in volume to ABB'.

Analysis. Suppose the problem solved, and let def be the

required segment, d being the vertex and ef the diameter of
the base. Let dd' be the diameter of the sphere which bisects
ef at right angles, c the centre of the sphere.

H

D

d

B S'

D'
A'

3

R

d'

Let M, G, g be the points where BB', EF, ef are bisected
at right angles by AA', DD', dd" respectivcly, and produce OA,

CD, cd respectively to H, K, b, so that

OA' + A'M :A'M= HM : MA)
I

CD' + D'G : D'G= KG : GD _ ,
!

cd' + d' g : d'g = kg : gd )

and suppose cones formed with vertices H, K, k and with the
same bases as the respective segments. The cones will then be
equal to the segments respectively [Prop. 2].

Therefore, by hypothesis,

the cone HBB'= the cone kef.
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Hence

(circle on diameter BB') : (circle on diameter el) ---kg :ttM,

so that BB'_: el' = kg : HM .................. (1).

But, since the segments DEF, def are similar, so are the
cones KEF, kef..

Therefore KG : EF = kg : el.

And the ratio KG : EF is give_ Therefore the ratio kg : ef
is given.

Suppose a length R taken such that

kg : ef = HM : R ..................... (2).
Thus R is given.

Again, since kg :HM= BB '_ : ef _= ef : R, by (1) and (2),

suppose a length 5: taken such that

ep = BB'. S,

or BB "_: ep = BB" : S.

Thus BB': el=el: S=S : R,

and el, S are two mean proportionals in continued proportion
between BB', R.

Synthesis. Le_ ABB', DEF be great circles, AA', DD'

the diameters bisecting BB', EF at right angles in M, G

respectively, and O, C the centres.

Take H, K in the same way as before, and construct the

cones HBB', KEF, which are therefore equal to the respective

segments ABB', DES'.

Let//be a straight line such that

KG : EF = HM : R,

and between BB', R take two mean proportionals el, S.

On ef as base describe a segment of a circle with vertex d

and similar to the segment of a circle .DEF. Complete the
circle, and let dd' be the diameter through d, and c the centre.

Conceive a sphere constructed of which de/is a great circle,
and through ef draw a plane at right angles to dd'.

H._ 6
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Then shall def be the required segment of a sphere.

For the segments DEF, def" of the spheres are similar, like

the circular segments DEF, def.

Produce cd to k so that

cd' + d' g : d' g = kg : gd.

The cones KEF, kef are then similar.

Therefore kg : el= KG : EF = HM : R,

whence kg : HM = e.f : R.

But, since BB', el, S, R are in continued proportion,

BB '_ : el" = BB' : S

=ef :R
= kg : HM.

Thus the bases of the cones tlBB', kef are reciprocally

proportional to their heights. The cones are therefore equal,
and def is the segment required, being equal in volume to the
cone kef. [Prop. 2]

PropoJition 6. (Problem.)

Given two segments of spheres, to find a third segment o/" a
sphere similar to one of the given segments and having its
surface equal to that of the other.

Let ABB' be the segment to whose surface the surface of

the required segment is to be equal, ABA'B" the great circle
whose plane cuts the plane of the base of the segment ABB' at
right angles in BB'. Let A A' be the diameter which bisects
BB' at right angles.

Let DES' be the segment to which the required segment
is to be similar, DED'S" the great circle cutting the base of the
segment at right angles in EF. Let DD' be the diameter

bisecting ES" at right angles in G.

Suppose the problem solved, def being a segment similar
to DES" and having its surface equal to that of ABB'; and



ON THE SPHEREAND CYLINDERII. 83

complete the figure for _f as for DEF, corresponding points
being denoted by small and capital letters respectively.

D

E@IF

d'

Join AB, DF, df

Now, sincc the surfaces of thc segments def, ABB' are equal,

so are the circles on dr, A B as diameters ; [I. 42, 43]

that is, d.f = AB.

From the similarity of the segments DES', def we obtain

d'd : dg= D'D : DG,

and dg : df = DG : DF;

whence d'd : dr-- D'D : DF,

or d'd : AB =-D'D : DF.

But AB, D'D, DF are all given;

therefore d'd is given.

Accordingly the synthesis is as follows.

Take d'd such that

d'd : AB = D'D : DF. ................... (1).

Describe a circle on d'd as diameter, and conceive a sphere
constructed of which this circle is a great circle.

6--2
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Divide d'd at g so that

d' g : gd = D'G : GD,
and draw through g a plane perpendicular to d'd cutting off
the segment de]"of the sphere and intersecting the plane of the

great circle in ef. The segments def, DEF are thus similar,
and dg : dr= DG : DF.

But from above, componendo,

d'd : dg -_ D'D : DG.

Therefore, ex aequali, d'd : dr= 1)'D : DF.
whence, by (1), dr-- AB.

Therefore the segment def has its surface equal to the
surface of the segment ABB' [I. 42, 43], while it is also similar
to the segment DEF.

Proposition 7. (Problem.)

_Fro_ a given sphere to cut off a segme_t by a plane so that
the segment may have a given ratio to the cone which has the same

base as the segment and equal height.

Let AA' be the diameter of a great circle of the sphere.

It is required to draw a plane at right angles to AA' cutting
off a segment, as ABB', such that the segment ABB' has to
the cone A BB" a given ratio.

Suppose the problem solved, and let the plane of section

cut the plane of the great circle in BB', and the diameter
AA' in M. Let 0 be the centre of the sphere.

8 D

"F

E

B'

Produce OA to H so that

OA' + A'M : A'M = HM : MA ............. (1).
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Thus the cone IYJBB' is equal to the segment ABB'. [Prop. 2]

Therefore the given ratio must be equal to the ratio of the
cone HBB" to the cone ABB', i.e. to the ratio HM : MA.

Hence the ratio OA' + A'M : A'M is given ; and therefore
A'M is given.

_op_.

Now OA' : A'M > OA' : A'A,

so that OA' + A'M : A'M > OA' + A'A : A'A

>3:2.

Thus, in order that a solution may be possible, it is a
necessary condition that the given ratio must be greater than
3:2.

The s_thelts proceeds thus.

Let AA" be a diameter of a great circle of the sphere, 0 the
centre.

Take a line DE, and a point F on it, such that DE : EF is

equal to the given ratio, being greater than 3 : 2.

Now, since OA' + A'A : A'A = 3 : 2,

DE : EF > OA' + A'A : A'A,

so that DF : FE > 0.4' : A'A.

Hence a point M can be found on AA' such that

DF : FE = OA' : A'M. ................... (2).

Through M draw a plane at right angles to AA' intersecting
the plane of the great circle in BB', and cutting off from the
sphere the segment ABB'.

As before, take H on OA produced such that

OA' + A'M : A'M = HM : MA.

Therefore HM :AIA = DE : EF, by means of (2).

It follows that the cone EBB', or the segment ABB', is to

the cone ABB' in the given ratio DE : EF.



_6 ARCHIMEDES

g
_" Propolition 8.

If _ sp_re be cut by a plane not pa_ng through t_ centre
into two segments A'BB', ABB', of which A'BB' is the greater,
then the ratio

(segmt. A'BB') : (segmt. ABB')
< (surface of A'BB')_: (surface of ABB') 2

Net > (surface of A'BB')I : (surface of ABB')t*.

Let the plane of section cut a great circle A'BAB' at right
angles in BB', and let AA' be the diameter bisecting BB' at
right angles in M.

Let 0 be the centre of the sphere.

Join A'B, AB.

H )H

As usual, take H on OA produced, and It' on OA' produced,
so that

OA' + A'M: A'M = HM: MA ................ (1),

021 + AM: AM = H'M : iliA'. ............ (2),

and conceive cones drawn each with the same base as the two

segments and with apices H, H' respectively. The cones are
then respectively equal to the segments [Prop. 2], and they
are in the ratio of their heights HM, H'M.

Also

(surface of A'BB') : (surface of ABB') = A'B _ : AB _ [I. 42, 43]

= A'M: AM.

" This is expressed in Archimedes' phrase by saying that the greater seg-
ment has to the lesser a ratio "less than the duplicate ($,_rXda,o_)of that which
the surface of the greater segment has to the suxface of the lesser, but greater
than the sesquialterate (_/a6X,o_) [of that ratio]."
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We have therefore to prove

(a) that H'M : MH < A'M' : MA _,

(b) that H'M : MH > A'Me : MA_.

(a) From (2) above,

A'M : A M = H'M : OA + A M

= H'A' : OA', since OA = OA'.

Since A'M> AM, H'A' > OA' ; therefore, if we take K on
H'A' so that OA'= A'K, K will fall betwcen H' and A'.

And, by (1), A'M : AM= KM : MH.

Thus KM : MH = H'A" : A'K, since A'K = OA',

> H'M : MK.

Therefore H'M. MH < KIlP.

It follows that

H'M. MH : MH 2 < KM' : MH',

or H'M : MH < KM _ : MH'

< A'M' : AM _, by (1).

(b) Since OA'=OA,

A'M. MA < A'O. OA,

or A'M : OA' < OA : AM

< H'A' : A'M, by means of (2).

Therefore A'M" < H'A'. OA'

< H'A'. A'K.

Take a point N on A'A such that

A'.R "_= H'A'. A'K

Thus H'A' : A'K = A'N" : A'K _ ............... (3).

Also H'A" : A'N = A'N : A'K,

and, componendo,

H'.N" : A'N= NK : A'K,

whence A'N _: A'K' = H'N" : N'K _.
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Therefore, by (3),

_A' : A'K = H'N I : NK'.

Now H'M : MK > H'N : _ARK.

Therefore H'M" : MK" > H'A' : A'K

> H'A" : OA'

> A'M: MA, by (2), as above,

> OA' + A'M : MH, by (1),

> KM: MH.

Hence H'M" : MH" = (H'M' : MK') . (K M' : MH')

> (KM : MH). (KM' : MH').
It follows that

H'M : MH > KM_ : MH]

> A'M] : AM_, by (1).

[The text of Archimedes adds an alternative proof of this
proposition, which is here omitted because it is in fact neither
clearer nor shorter than the above.]

Proposition 9.

Of all segments of spheres which have equal surfaces the

hemisphere is the greatest in volu_r_.

Let ABA'B' be a great circle of a sphere, AA' being
a diameter, and 0 the centre. Let the sphere be cut by

a plane, not passing through O, perpendicular to AA' (at M),
and intersecting the plane of the great circle in BB'. The

segment ABB' may then be either less than a hemisphere as
in Fig. 1, or greater than a hemisphere as in Fig. 2.

Let DED'E' be a great circle of another sphere, DD'
being a diameter and C the centre. Let the sphere be cut by

a plane through C perpendicular to DD' and intersecting the
lalaue of the great circle in the diameter EE'.
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Suppose the surfaces of the segment ABB" and of the

hemisphere DEE" to be equal.

B

B_ K A'_B, H

K- A H E

D'_F
E'

Since the surfaces are equal, AB = DE. [I. 42, 43]

Now, in Fig. 1, AB _> 2AM g and < 2AO _,

and, in Fig. 2, AB _< 2AM" and > 2AO 2.

Hence, if R be taken on AA' such that

AR _= ½AB _,

R will fall between 0 and M.

Also, since AB _-- DE _, AR = CD.

Produce OA' to K so that OA'= A'K, and produce A'A to
H so that

A'K : A'M = HA : AM,

or, componendo, A'K + A'M : A'M= TIM : MA ............ (1).

Thus the cone TIBB" is equal to the segment ABB'.

[Prop. 2]

Again, produce CD to F so that CD= DF, and the cone

FEE' will be equal to the hemisphere DEE t. [Prop. 2]

Now AR. RA' > AM. MA',

and AR" = ½AB _ = ½AM. AA' = AM. A'K.
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Hence

AR. RA' + RA _ > AM. MA' + AM. A'K,

or AA' .AR > AM. MK

> HM. A'M, by (1).

Therefore AA' : A'M > HM : AR,

or AB _ : .BM _ > HM : AR,

i.e. AR" : BM' > HM : 2AR, since AB _= 2AR -_,

> HM : CF.

Thus, since AR = CD, or CE,

(circle on diam. EE') : (circle on diam. BB') > HM : CF.

It follows that

(the cone FEE')> (the cone HBB'),

and therefore the hemisphere DEE' is greater in volume than
the segment ABB'.



MEASUREMENT OF A CIRCLE.

Proposition 1.

The area of a_y circle is equal to a right-angled triangle in
which one of the sides about the right angle is equal to the radius.
and the other to the circumference, of the circle.

Let ABCD be the given circle, K the triangle described.
T G H

Then, if the circle is not equal to K, it must be either
greater or less.

I. If possible, let the circle be greater than K.

In_ribe a square ABCD, bisect the ares AB, BC, CD, DA,

then bisect (if necessary) the halves, and so on, until the sides

ofthe inscribedpolygonwhose angularpointsarethe pointsof

divisionsubtendsegmentswhose sum islessthanthe excessof
theareaofthecircleover/(.
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Thus the area of the polygon is greater than K.

Let AE be any side of it, and ON the perpendicular on 21E
from the centre O.

Then ON is less than the radius of the circle and therefore

less than one of the sides about the right angle in K. Also the
perimeter of the polygon is less than the circumference of the
circle, i.e. less than the other side about the right angle in K.

Therefore the area of the polygon is less than K; which is
inconsistent with the hypothesis.

Thus the area of the circle is not greater than K.

II. If possible, let the circle be less than K.

Circumscribe a square, and let two adjacent sides, touching
the circle in E, H, meet in T. Bisect the arcs between adjacent

points of contact and draw the tangents at the points of
bisection. Let A be the middle point of the arc EH, and FAG

the tangent at A.

Then the angle TAG is a right angle.

Therefore TG > GA

> GH.

It follows that the triangle FTG is greater than half the area
TEAH.

Similarly, if the arc AH be bisected and the tangent at the
point of bisection be drawn, it will cut off from the area GAH
more than one-half.

Thus, by continuing the process, we shall ultimately arrive
at a circumscribed polygon such that the spaces intercepted
between it and the circle are together less than the excess of
K over the area of the circle.

Thus the area of the polygon will be less than K.

Now, since the perpendicular from 0 on any side of the
polygon is equal to the radius of the circle, while the perimeter
of the polygon is greater than the circumference of the cn.cle,

it follows that the area of the polygon is greater than the
triangle K; which is impossible.
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Therefore the area of the circle is not less than K.

Since then the area of the circle is neither greater nor less
than K, it is equal to it.

Proposition _.

The area of a circle is to the square on its diameter as ll
to 14.

[The text of this proposition is not satisfactory, and Archi-

medes cannot have placed it before Proposition 3, as the
approximation depends upon the result of that proposition.]

Proposition 3.

The ratio of the circumference of any circle to its diameter
is less than 3_ but greater than 3_°.

[In view of the interesting questions al_sing out of the
arithmetical content of this proposition of Archimedes, it is

necessary, in reproducing it, to distinguish carefully the actual
steps set out in the text as we have it from the intermediate
steps (mostly supplied by Eutocius) which it is convenient to

put in for the purpose of making the proof easier to follow.
Accordingly all the steps not actually appearing in the text
have been enclosed in square brackets, in order that it may be
clearly seen how far Archimedes omits actual calculations and

only gives results. It will be observed that he gives two
fractional approximations to ,,/3 (one being less and the other

greater than the real value) without any explanation as to how
he arrived at them ; and in like manner approximations to the
square roots of several large numbers which are not complete

squares are merely stated. These various approximations and
the machinery of Greek arithmetic in general will be found
discussed in the Introduction, Chapter IV.]

I. Let AB be the diameter of any circle, 0 its centre, AC

the tangent at A ; and let the angle A OC be one-third of a
right angle.
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Then OA : AC [= _/3 : 1] > 265 : 153 ............. (1),

and OC : CA [= 2 : 1] = 306 : 153 ............... (2).

First, draw OD bisecting the angle AOC and meeting AC
m D

Now CO : OA = CD : DA, [Eucl. VI. 3]

so that [CO + OA : OA = CA : DA, or]

CO+OA :CA=OA :AD.

Therefore [by (1) and (2)]

OA : AD >571 : 153 .................. (3).

Hence OD2: AD_[=(OA'_+AD "J): AD _

>(571' + 153') : 1532]

> 349450 : 23409,

so that OD : DA > 591{_ : 153 ..................... (4).

C

3

Secondly, let OE bisect the angle AOD, meeting AD in E.

[Then DO : OA = DE : EA,

so that DO + OA : DA = OA : AE.]

Therefore OA : AE[> (591_ + 571) : 153, by (3) and (4)]

> 1162_ : 153 ..................... (5).
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lit follows that

OE" :EA" > {(1162_)'+ 153'} : 153'

> (1350534_ + 23409) : 23409

> 1373943_r_ : 23409.]

Thus OE : EA > 1172 k : 153 ..................... (6).

Thirdly, let OF bisect the angle A OF, and meet AE in F.

We thus obtain the result [corresponding to (3) and (5)
above] that

OA : AF[> (1162_ + 11724) : 153]

>233¢¼ : 153 ..................... (7)

[Therefore OF 2 :FA" > {(23345)'+ 153 _} : 153 _

> 5472132_ : 23409.]

Thus OF : FA > 23395 : 153 ..................... (8).

Fourthly, let OG bisect the angle AOF, meeting AF in G

We have then

OA :A G [> (2334¼ + 2.'3395) : 153, by means of (7) and (8)]

>4673½ : 153.

Now the angle A OC, which is one-third of a right angle,
h_ been bisected four times, and it follows that

L AOG = a_ (a right angle).

Ma' e the angle AOH on the other side of OA equal to the
angle A OG, and let GA produced meet OH in H.

Then L GOH= _ (a right angle).

Thus G//is one side of a regular polygon of 96 sides cir-
cumscribed to the given circle.

And, since OA : AG > 4673½ : 153,

while AB = 20A, Gtt = 2A G,

it follows that

AB : (perimeter of polygon of 96 sides) [> 4673_ : 153 × 96]

> 46733 : 14688.
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14688 3 667_
But 4673½ = + 4-678½

, 667½3

< 3}.

Therefore the circumference of the circle (being less than

the perimeter of the polygon) is a fortiori less than 3} times
the diameter AB.

II. Next let AB be the diameter of a circle, and let AC,

meeting the circle in C, make the angle CAB equal to one-thixd
of a right angle. Join BC.

Then AC : CB [= _/3 : 1] < 1351 : 780.

First, let AD bisect the angle BAC and meet BC in d and
the circle in D. Join BD.

Then z BAD= L dAC

= / dBD,

and the angles at D, C are both right angles.

It follows that the triangles ADB, [ACd], BDd are similar.

G I

8 o A

Therefore AD : DB = BD : Dd

od]
---AB : Bd [Eucl. VI. 3]
=AB+ AC : Bd+Cd

=AB+AC : BC

or BA + AC : BC = AD : DB.
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[But AC : GB< 1351 : 780, from above,
while BA : BC=-2 : 1

= 1560 : 780.]

Therefore AD :/)B< 2911 : 780 .................. (1).

[Hence AB' : BD' < (2911 _+ 780') : 780'

< 9082321 : 608400.]

Thus AB : BD < 3013_ : 780 ............... (2).

Secondly, let AE bisect the angle BAD, meeting the circle
in E; and let BE be joined.

Then we prove, in the same way as before, that

AE : EB[= BA + AD : BD

< (3013_ + 2911) : 780, by (1) and (2)]

< 5924_ : 780

< 5924_ x _ : 780 x

< 1823 : 240 ........................... (3).

[Hence AB" : BE' < (1823' + 240 _) : 240'

< 3380929 : 57600.]

Therefore AB : BE < 1838-/_ : 240 .................. (4).

Thirdly, let AF bisect the angle BAE, meeting the circle
in F.

Thus AF : FB[= BA + AE : BE

< 3661-_ : 240, by (3) and (4)]

< 3661-_ x ¼_ : 240 x

< 1007 : 66 ........................ (5).
[It follows that

AB" : BF _< (1007' + 66') : 66'

< 1018405 : 4356.]

Therefore AB : BF< 1009{ : 66 ..................... (6).

Fourthly, let the angle BAF be bisected by AG meeting the
circle in G.

Then AG : GB [= BA + AF : BF]

< 2016_ : 66, by (5) and (6).
H./_. 7
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[And AB _ : BG" < {(2016_)' + 66'} : 66'

< 4069284_ : 4356.]

Therefore AB : BG < 2017¼ : 66,

whence BG : AB > 66 : 2017¼ ...................... (7).

[Now the angle BAG which is the result of the fourth bisection
of the angle BAC, or of one-third of a right angle, is equal to

one-fortyeighth of a right angle.

Thus the angle subtended by BG at the centre is

(a right angle).]

Therefore BG is a side of a regular inscribed polygon of 96
sides.

It follows from (7) that

(perimeter of polygon) : AB [> 96 × 66 : 2017-}]

> 6336 : 2017¼.
6336

And >
Much more then is the circumference of the circle greater than
3}-_ times the diameter.

Thus the ratio of the circumference to the diameter

< 3_ but > 3_t-_.



ON CONOIDS AND SPHEROIDS.

Introduction J.

" ARCHIMEDES tv Dositheus greeting.

In this book I have set forth and send you the prooth of the

remaining theorems not included in what I sent you before, and
also of some others discovered later which, though I had often

tried to investigate them previously, I had failed to alvive at
because I found their discover), attended with some difficulty.
And this is why even the propositions themselves were not

published with the rest. But afterwards, when I had studied
them with greater care, I discovered what I had failed in
before.

Now the remainder of the earlier theorems werc propositions

concerning the right-angled conoid [paraboloid of revolution] ;
but the discoveries which I have now added relate to an obtuse-

angled conoid [hyperboloid of revolution] and to spheroidal

figures, some of which I call oblong (vtapapa_cea) and others fiat

I. Concerning the right-angled conoid it was laid down

that, if a section of a right-angled cone [a parabola] be made to
revolve about the diameter [axis] which remains fixed and

* Thewholeof this in_oductorymatter,includingthe definitions,is trans-
latedliterallyfromtheGreektex_in orderthat the terminologyof Archimedes
maybe faithfullyrepresented. Whenthis has once beenset out, nothingwill
be lost byreturningto modernphraseologyandnotation. Thesewillaccord£ugly
be employed,as usual,whenwecome to the actualpropositionsof the _eatise.
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return to the position from which it started, the figure compre-
hended by the section of the right-angled cone is called a right-
angled conoid, and the diameter which has remained fixed

is called its axis, while its vertex is the point in which the
axis meets (_vrreTat) the surface of the conoid. And if a plane

touch the right-angled conoid, and another plane drawn parall_l
to the tangent plane cut off a segment of the conoid, the base

of the segment cut off is defined as the portion intercepted by
the section of the eonoid on the cutting plane, the vertex

[of the segment] as the point in which the first plane touches
the conoid, and the axis [of the segment] as the portion cut

off within the segment from the line drawn through the vertex
of the segment parallel to the axis of the conoid.

The questions propounded for consideration were

(1) why, if a segment of the right-angled conoid be cut off
by a plane at right angles to the axis, will the segment so cut
off be half as large again as the cone which has the same base

as the segment and the same axis, and

(2) why, if two segments be cut off from the right-angled
conoid by planes drawn in any manner, will the segments so cut
off have to one another the duplicate ratio of their axes.

II. Respecting the obtuse-angled conoid wc lay down the
following premisses. If there be in a plane a section of an

obtuse-angled cone [a hyperbola], its diameter [axis], and the
nearest lines to the section of the obtuse-angled cone [i.e. the

asymptotes of the hyperbola], and if, the diameter [axis]
remaining fixed, the plane containing the aforesaid lines be
made to revolve about it and return to the position from which

it started, the nearest lines to the section of the obtuse-angled
cone [the asymptotes] will clearly comprehend an isosceles cone
whose vertex will be the point of concourse of the nearest lines

and whose axis will be the diameter [axis] which has remained

fixed. The figure comprehended by the section of the obtuse-

angled cone is called an obtu_-angled conotd [hyperboloid of
revolution], its axis is the diameter which has remained fixed,
and its vertex the point in which the axis meets the surface
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0£ the conoid. The cone comprehended by the nearest lines to
the section of the obtuse-angled cone is called [the cone]

enveloping the conoid (orepdX_OV _6 _ovoe_), and the
straight line between the vertex of the conoid and the vertex
of the cone enveloping the conoid is called [the line] adjacent

to the axis (7roreo_)aa r_ d_$o_t). And if a plane touch the
obtuse-angled conoid, and another plane drawn parallel to the
tangent plane cut off a segment of the conoid, the base of

the segment so cut off is defined as the portion intercepted by
the section of the conoid on the cutting plane, the vertex [of
the segment] as the point of contact of the plane which touches

the conoid, the axis [of the segment] as the portion cut off
within the segment from the line drawn through the vertex of
the segment and the vertex of the cone enveloping the conoid;
and the straight line between the said vertices is called

adjacent to the axis.

Right-angled conoids are all similar; but of obtuse-angled

conoids let those be called similar in which the cones enveloping
the conoids are similar.

The following questions are propounded for consideration,

(1) why, if a segment be cut off from the obtuse-angled
conoid by a plane at right angles to the axis, the segment so
cut off has to the cone which has the same base as the segment

and the same axis the ratio which the line equal to the sum
of the axis of the segment and three times the line adjacent
to the axis bears to the line equal to the sum of the axis of

the segment and twice the line adjacent to the axis, and

(2) why, if a segment of the obtuse-angled conoid be cut

off by a plane not at right angles to the axis, the segment so
cut off will bear to the figure which has the _me base as

the segment and the same axis, being a segment of a cone*
(d_r_rpapa xdvov), the ratio which the line equal to the sum
of the axis of the segment and three times the line adjacent
to the axis bears to the line equal to the sum of the axis of the
segment and twice the line adjacent to the axia

* Asegm_t of a coneis definedlater(p. 104).
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III. Concerning spheroidal figures we lay down the follow-
ing premisse._. If a section of an acute-angled cone [ellipse] be
made to revolve about the greater diameter [major axis] which

remains fixed and return to the position from which it started,

the figure comprehended by the section of the acute-angled
cone is called an oblong spheroid ('rrapal_e_ o'_a_poe_)
But if the section of the acute-angled cone revolve about the
lesser diameter [minor axis] which remains fixed and return

to the position from which it started, the figure comprehended
by the section of the acute-angled cone is called a flat spheroid

(£'rrL'n'ka'r_,a_aLpoe_). In either of the spheroids the
is defined as the diameter [axis] which has remained fixed, thc
vertex as the point in which the axis meets the surface of the

spheroid, the centre as the middle point of the axis, and the
diameter as the line drawn through the centre at right angles

to the axis. And, if parallel planes touch, without cutting,
either of the spheroidal figures, and if another plane be dra_l_
parallel to the tangent planes and cutting the spheroid, the

base of the resulting segments is defined as the portion inter-
cepted by the section of the spheroid on the cutting plane, their
vertices as the points in which the parallel planes touch the
spheroid, and their axes as the portions cut off within the

segments from the straight line joining their vertices. And
that the planes touching the spheroid meet it,s surface at one

point only, and that the straight line joining the points of
contact passes through the centre of the spheroid, we shall

prove. Those spheroidal figures are called similar in which
the axes have the same ratio to the 'diameters.' And let

segments of spheroidal figures and conoids be called similar if

they axe cut off from similar figures and have their bases

similar, while their axes, being either at right angles to the
planes of the bases or making equal angles with the corre-
._3_onding diameters [axes] of the bases, have the same ratio

to one another as the corresponding diameters [axes] of the
bases.

The following questions about spheroids are propounded fi_r
consideration,

(1) why, if one of the spheroidal figures be cut by a plane
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through the centre at Hght angles to the axis, each of the

resulting segments will be double of the cone having the same
base as the segment and the same axis ; while, if the plane of
section be at right angles to the axis without passing through

the centre, (a) the greater of the resulting segments will bear
to the cone which has the same base as the segment and the
same axis the ratio which the line equal to the sum of half the

straight line which is the axis of the spheroid and the axis of
the lesser segment bears to the axis of the lesser segment, and
(b) the lesser segment bears to the cone which has the same
base as the segment and the same axis the ratio which the line

equal to the sum of half the straight Line which is the axis
of the spheroid and the axis of the greater segment bears to the

axis of the greater segment ;
(2) why, if one of the spheroids be cut by a plane passing

through the centre but not at right angles to the axis, each of

the resulting segments will be double of the figure having the
same base as the segment and the same axis and consisting of a
segment of a cone*.

(3) But, if the plane cutting the spheroid be neither
through the centre nor at right angles to the axis, (a) the
greater of the resulting segments will have to the figure

which has the same base as the segment and the same axis
the ratio which the line equal to the sum of half the line

joining the vertices of the segments and the axis of the lesser
segment bears to the axis of the lesser segment, and (b) the
lesser segqnent will have to the figure with the same base

as the segment and the same axis the ratio which the line
equal to the sum of half the line joining the vertices of the
segments and the axis of the greater segment bears to the axis

of the greater segment. And the figure referred to is in these
cases also a segment of a cone*.

When the aforesaid theorems are proved, there are dis-

covered by means of them many theorems and problems.

Such, for example, are the theorems
(1) that similar spheroids and similar segments both of

* Seethe definitionofa sr_aent of a cone(J._4T_ KdJ_ov)on p. 104.
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spheroidal figures and conoids have to one another the triplicate
ratio of their axes, and

(2) that in equal spheroidal figures the squares on the
' diameters' are reciprocally proportional to the axes, and, if in

spheroidal figures the squares on the' diameters' are reciprocally
proportional to the axes, the spheroids are equal.

Such also is the problem, From a given spheroidal figure
or conoid to cut off a segment by a plane drawn parallel to a

given plane so that the segment cut off is equal to a given cone
or cylinder or to a given sphere.

After prefixing therefore the theorems and directions (_Tr_-

'r&'/Iza'ra) which are necessary for the proof of them, I will
then proceed to expound the propositions themselves to you.
Farewell.

DEFINITIONS.

If a cone be cut by a plane meeting all the sides [generators]
of the cone, the section will be either a circle or a section of an

acute-angled cone [an ellipse]. If then the section be a circle,
it is clear that the seglnent cut off from the cone towards the
same parts as the vertex of the cone will be _ cone. But, if

the section be a section of an acute-angled cone [an ellipse], let
the figure cut off from the cone towards the same parts as the
vertex of the cone be called a segment of a cone. Let the

bue of the segment be defined a.s the plane comprehended by

the section of the acute-angled cone, its vertex as the point
which is also the vertex of the cone, and its axis as the straight
line joining the vertex of the cone to the centre of the section

of the acute-angled cone.

And if a cylinder be cut by two parallel planes meeting all
the sides [generators] of the cylinder, the sections will he either

circles or sections of acute-angled cones [ellipses] equal and
similar to one another. If then the sections be circles, it is

clear that the figure cut off from the cylinder between the

parallel planes will be a cylinder. But, if the sections be
sections of acute-angled cones [ellipses], let the figure cut off

from the cylinder between the parallel planes be called a
frustum (T_/_o_) of a cylinder. And let the hues of the
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frustum be defined as the planes comprehended by the sections
of the acute-angled cones [ellipses], and the A_a as the straight

line joining the centres of the sections of the acute-angled
cones, so that the axis will be in the same straight line with

the axis of the cylinder."

Lemma.

It" in an ascending arithmetical progression consisting of the
magnitudes A,, A2 .... As the common difference be equal to the
least term A,, then

n. A,, < 2 (A: + A_ + ... + A,_),

and > 2(A, +As+ ... + A,,_,).

[The proof of this is given incidentally in the treatise On

Spirals, Prop. 11. By placing lines side by side to represent
the terms of the progression and then producing each so as to

make it equal to the greatest term, Archimedes gives the
equivalent of the following proof.

If S_ = A, + A, + ... + A,__ + A_,

we have also S,,=A,+A,_,+An_2+...+A,

And A_ + A,_, = As + A,_,., =... = A,,.

Therefore 2Sn = (n + 1)A.,

whence n. A,, < 2S,_,

and _. As > 23__,.

Thus, if the progression is a, 2a .... na,

sn =n(n + l) a,2

and n_a < 28,_,

but > 2S_.]

Propomition 1.

If Aa, B_, C_, ...K, and A_, B2, C2.... Ks be two series of
magnitudes such that

A, : B, = As : B,, }.............. (_),B_ C,= Bs Cs, and so on
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and if As, Bs, Cs.... Ks and A,, B,, C, .... K, be two other series
such that

A_ : As=A., : A,, )

B, : Bs = B'2 : B, , and so on t (B),

then (A, +B,+ C,+ ... +K,) :(A., + B3+ C3+ ... +K_)

=(A.,+ B..,+C2+ ... + K2) :(A, + B, + ... + K O.

The proof is as follows.

Since As : A1 = A, : A._,

and A1 : B_ = A., : B_.,

while B_ :B_ = B._ : B4,

we have, ex aequali, A_ : Bs -- Ad :B4. (_).
Similarly B3 :Cs = B, : C4, and so on

Again, it follows from equations (a) that

AI:A..=B1:B..= Cl :C. .....

Therefore

A_:A_=(A, + B, +C_ +... + K_):(A_. + B._+ ... + K._),

or (A] +B_+C_+ ... + K2):A,=(A...+ B.. +C2+ ... + K:):A._;

and A1 : A_ = A_ : A,,

while from equations (7) it follows in like manner that

Aa:(As+ Bs+C3+... + K3)=A,:(A,+ B,+C,+... +A_).

By the last three equations, ex aequali,

(A, + B_ + C_+ ... + K_) : (As + B_ + C_+ ... +Ks)

--(A..+ B2 4 Co.+ ... + 1(..) : (A,+ B,+C, + ... + 1(,).

CoI_ If any terms in the third and fourth series corre-
sponding to terms in the first and second be left out, the

result is the same. For example, if the last terms K3, K_ are
absent,

(A, + B, + @1+ ... +K,):(A3+Bs+ G'a+ ... +5)

= (A_+B,+ C2+ ... +Ks):(A,+B,+C,+ ... +[,),

where I immediately precedes K in each series.
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Lemma to Proposition 2.

[On Spirals, Prop. 10.]

If A, A2, A3, ...An be n lines forming an ascendiT_g
_trithmetical progression i_, which the common diffe_'elwe is equal
to the least term A_, then

0_ + ])AJ+ A,(A, +A:+A_ +... +A,,)

= 3 (A,'- + A/+ A¢-' +... + A J).

AI A A._sAa-_ An_ I

A,LA__IA,_! AS As A|

Let the linesA., An-,,A._ ....A: be placedin a row

from leftto right. ProduceAn-. An_..,...A,untiltheyare
each equal to A,,, so that the parts produced are respectively
equal to A_, A..,.... A,,_,

Taking each line successively, we have

2An'= 2An _,

(A_ + An_J' = A/ + a'__, + 2A,. An_,,

(A,, + An--e)* = A/+ A'n_ , + 2A:. An_:,
ooo ...... ,oo, ...... * ....... o ...... oo,o ......... °

(a,__, + A 0' -- A*,,_, + A/+ 2A,,_.,. A,.
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And,by addition,

(n + 1)A,,' ---2 (Aa' + A_.*+... + A_')

+ 2A1. A_-I + 2A2. A__2 +... + 2A,,_1 •A1.

Therefore, in order to obtain the required result, we have to
prove that

2(A,.A,__1+ A,. A,_._ +... + A,__,. A O+ A, (A, + A_ +As+... + A,,)

---At" + A," +... + A,," ............ (a).

Now 2A,. Am_,-- A_. 4A__,, because A_-- 2A_,

2A3. A_-3 : A_. 6A,,-s, because A_ = 3A_,
.........., ........ , .......

2A,___. A_ -" A_. 2(n - 1)Az.

It follows that

2(A_ .A,,__ + A,.An_: +... + A,___.A_) + A_( A, + A._+... + An)

= A_{A_ + 3A,,__ + 5A,,_... + ... +(2n - 1)A,}.

And this last expression can be proved to be equal to

A _*+ A.? + + A *

For A_' = A,(n. A,_)

= 1)A.}
.=A,{A_,+2(A,,__+A,__._+ ... + A,)},

because (n - 1) A,_ = A,H + A,

+ A,,__..+ A_

-[- ............

+ A1 + A,_-I.

Similarly A'___ - A_ IA_I + 2(A___ + A___ + ... + A,)},
• ............. .... .........

As" = A_(A, + 2A_),

A1_ = Al. A_ ;

whence, by addition,

Al' + A2_+ As* + ... + An*

= A,{A,, + 8A,___ + 5A,,..._.+ ... +(2n- 1)A d.
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Thus the equation marked (a) above is true ; and it follows
that

(n + 1)A,_'+AI(A_ +As + A, +... +A_) = 3(A_' + A,' +... +A_').

COP. 1. From this it @ evident that

n. A,,'< 3(A1' + A,2 + ... + A_') ............. (1).

Also An'=A_{A,,+2(A,,_,+A,,__+ ... +A_)}, as above,

so that A_'>A,(A_+An__+...+A_),

and therefore

A,_"+ A_(A, + A._+... + A_) < 2A_:.

It jbllows from the proposition that

,_.AJ > 3(A,' + A? +... + A_,_',)................. (2).

Cop. 2. All these results will hold if we substitute similar

figures for squares on all the lines ; for similar figures are in the
duplicate ratio of their sides.

[In the above proposition the symbols A_, A2.... A,, have
been used instead of a, 2a, 3a .... na in order to exhibit the

geometrical character of the proof; but, if we now substitute
the latter terms in the various results, we have (1)

(n+ l) n'a_ +a(a + 2a +... +na)

---3 {a' + (2a)' + (3a) _+... + (ha,)' I.

Therefore a2+ (2a) _+ (3a)' +... + (na)"

1)[= _ (n+l)n'+ - 2 J

= a,.n(n + 1) (2n + 1)
6

.Also (2) ns<3(1'+2'+3'+... +-n'),

and (3) ns > 3 (1' + 2' + 3'_+... + n - 1]').]



110 ARCHIMEDES

Propoalflon _.

IRA,, As ... An be any number o/areas such that °
A_ -- a,x+x _,

A o= a. 2x + (2x)',

As = a. 3x + (3x) _,
,° ....... ° ....... • ....

An = a . nx + (nx)',

then n. A,, : (A, + A,. +... + A,,) < (a + no:) : + _- ,

and n. A,, : (A, + A_ +... + A,_I) > (a + nx) : + -_ .

For, by the Lemma immediately preceding Prop. 1,

n. anx< 2(ax+a. 2x+ ... +a._uv),

and _ 2(ax+ a.2x+ ... +a.n- 1 x).

Also, by the Lemma preceding this proposition,

n. (r_)'< 8_x_+ (_)' + (sx)_+... + (_)*}
a_d > _{x'+ ('2_)'+... + (,_- 1_)'}.
Hence

an2x n__(__:-V+ < [(a_4_")+ {_._ 4 (2x)'}+ ... +/_. _ +(,_)'}],
and

> [(a_+ _') + {_._. (_)_}+... + {_.,_- _• + (n- __)'}],
an_x

(7)" < A_ + A. + +
n

A,,,or _ + _ ..-
and > A_ + As + ... + A___.

It follows that

_an_x n_(_)_n.A,_ : (A_ + A_+... + A,)< n {a._x +(nx)'} : [-z 2- +

or n.A,:(Aa+A,+...+A,,)<(a+nx):(2+3);

also n. An:(A,+A,+...+An-a)>(a+'_x):(2+7).

* The phraseology of Archimedes here is that assoczated with the traditional
method of application of areas: d xa..,*rap' _Kd_rar afiTar _rapaf_ rt X_plot,

_rep[_t_or d&t _'erpa_/o_o, " if to each of the lines there be applied a space
[rectangle] exceeding by a square figure." Thus A 1is a rectangle of height x ap-
plied to a line a hut overlapping it so that the base extends a distance x beyond a.
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l_opo_ttton O.

(1) If TP, TP' be two tangents to any conio meeting in T,
and if Qq, Q'q' be any two chords parallel respecti,ely to TP,

TP' and meeting in O. then

QO. Oq : Q'O. Oq'= TP" : TP".

"And this is proved in the elements of conics*."

(2) If QQ' be a chord of a parabola bisected in V by the
diameter PV, and if 1)V be of constant length, then the areas of
the triangle PQQ' and of the segment PQQ' are both constant
whatever be the direction of QQ'.

Let ABB' be the particular segment of the parabola whose
vertex is A, so that B/_' is bisected perpendicularly by the axis

at the point ti, where AH = PV.

Draw QD perpendicular to P V.

B Q

T_I H MJ

Let p_ be the parameter of the principal ordinates, and let
p be another line of such length that

QV' : QD'=p :p,;

it will then follow that p is equal to the parameter of the ordi-
nates to the diameter -PV, i.e. those which are parallel to QV.

• i.e. in the treatises on conics by Aristaeus and Euclid.
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" For this is proved in the conics*."

Thus Q V" = p . P V.

And BH'=pa. Att, while AH=PV.

Therefore Q V _ : BH" = p : pa.

But QV _ : QD _=p : p_ ;

hence BH = QD.

Thus BH. AH = QD. P V,

and therefore AABB'= APQQ' ;

that is, the area of the trianglc PQQ' is constant so long as PV
is of constant length.

Hence also the area of the segmcnt PQQ' is constant under
the same conditions; for the segment is equal to _ApQQ'.
[Quadrature of the Parabola, Prop. 17 or 24.]

* The theorem which is here assumed by Archimedes as known can be

proved in various ways.
(1) It is easily deduced from Apollonius I. 49 (el. Apollonms of Perga,

pp. hii, 39). If in the figure the tangents at A and P be drawn, the former
meeting PV in E, and the latter meeting the axis in T, and if AE, PT meet
at C, the proposition of ApoUonius is to the effect that

CP : PE :p : 2PT,

where IDis the parameter of the ordinates to PV.

(2) It may be proved independently as follows.

Let QQ' meet the axis in O, and let QM, Q'M', PN be ordinates to the axis.

Then AM : AM'= QM _ : Q'M_2= OM °": OM "_,

whence AM : MM' = OM "z: OM 2 - OM _

= OM 2 : (OM- OM'). MM',

so that OMa=AM. (OM- OMI).

That is to say, (AM- AO)2=AM. (AM+AM'-2AO),
or AO2=AM.AM '.

And, since QM _-- Pa" A M, and Q'M '2 = Pa. AM',

it follows that QM. Q'M'=pa. AO ....................... (_).

Now QV' : QD_=QV2 : (-QM +_Q'M') ''

=QV, : (QM2Q'M')'+QM. Q'M '

= q v _ : (PN2 + QM . Q'M')

=p.PV:pm. (AN+aO), by (_).

But PV= TO=,4N + AO.

Therefore Qv_ : QD_= p : pl.
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Proposition 4.

The area of any ellipse is to that of the auxiliary circle as
the minor axis to the n_ajor.

Let AA' be the major and BB" the minor axis of the

elhpse, and let BB' meet the auxiliary circle in b, b'.

Suppose 0 to be such a circle that

(circle AbA'b')'. 0 = CA : CB.

Then shall 0 be equal to the area of the ellipse.

For, if not, 0 must be either greater or less than the

ellipse.

1. If possible, let O be greater than the ellipse.

We can then inscribe in the circle 0 an equilateral polygon
of 4n sides such that its area is greater than that of the ellipse.

[c£ On the Sphere and Cylitwler, I. 6.]

b

A A'

b'

Let this be done, and inscribe in the auxiliary circle of the

ellipse the polygon AefbghA'... similar to that inscribed in O.
Let the perpendiculars eM, fN .... on AA" meet the ellipse m
E, F,... respectively. Join AE, EF, FB .....

Suppose that P' denotes the area of the polygon inscribed
in the auxiliary circle, and P that of the polygon inscribed in
the ellipse.

m_ 8
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Then, since all the lines el_, fN,.., are cut in the same
proportions at E, F,...,

i.e. eM : EM = fN : F2Y .... = bC : BC,

the pairs of triangles, as cAM, EAM, and the pairs of trapeziums,
as eM2Vf, EM2VF, are all in the same ratio to one another
as bC to BC, or as CA to OB.

Therefore, by addition,

P' : P = CA : CB.

Now P' : (polygon inscribed in O)

= (circle AbA'b') : 0

= CA : CB, by hypothesis.

Therefore P is equal to the polygon inscribed in O.

But this is impossible, because the latter polygon is by

hypothesis greater than the ellipse, and a fortiori greater
than P.

Hence 0 is not greater than the ellipse.

II. If possible, let 0 be less than the ellipse.

In this case we inscribe in the ellipse a polygon P with 4n
equal sides such that P > O.

Let the perpendiculars from the angular points on the
axis AA' be produced to meet the auxiliary circle, and let the
corresponding polygon (P') in the circle be formed.

Inscribe in 0 a polygon similar to P'.

Then P': P = CA : CB

--(circle AbA'b') : 0, by hypothesis,

= P' : (polygon inscribed m 0).

Therefore the polygon inscribed in 0 is equal to the

polygon P ; which is impossible, because P > O.

Hence O, being neither greater nor less than the ellipse, is

equal to it; and the required result follows.
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Proposition 5.

If AA', BB' be the major and minor axis of an ellipse

respectively, and if d be the diameter of any circle, then

(area of ellipse) : (area of'circle)= AA'. BB': d _.
For

(area of ellipse) : (area of auxiliary circle) = BB' : AA' [Prop. 4]
= AA'.BB': AA '_.

And

(area of aux. circle) : (area of circle with diam. d) -- AA "_: d_.

Therefore the required result follows ex aequali.

Proposition O.

The areas _f ellipses are as the rectangles under their axes.

This follows at once from Props. 4, 5.

COR. The area," of similar ellipses are as the squares of

corresponding ctJ'es.

Proposition 7.

Given an ellipse with centre C, and a lille CO drawn per-
pendicular to its plane, it is possible to find a circular cone
with vertex 0 and s_ch that the given ellipse is a sectio_ of it

[or, in other words, to find the circular sections of the cone with
vertex 0 passing through the circumference of the ellipse].

Conceive an ellipse with BB' as its minor axi_ and lying in
a plane perpendicular to that of the paper. Let CO be drawn

perpendicular to the plane of the ellipse, and let 0 be the
vertex of the required cone. Produce OB, OC, OB', and in the
same plane with them draw BED meeting OC, OB' produced

in E, D respectively and in such a direction that

BE. ED : EO _= CA" : 00",

where CA is half the major axis of the ellipse.
8--2
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"And this is p_ssible, since

BE. ED : EO" > BC. CB' : CO'."

[Both the construction and this proposition are assumed as
_own.]

o

• , ¢

Now conceive a circle with BD as diameter lying in a plane
at right angles to that of the paper, and describe a cone with
this circle tbr its base and with vertex O.

We have therefore to prove that the given ellipse is a

section of the cone, or, if P be any point on the ellipse, that P
lies on the surface of the cone.

Draw PZ r perpendicular to BB'. Join Oh r and produce it
to meet BD in M, and let MQ bc drawn in the plane of the

circle on BD as diameter perpendicular to BD and meeting the
circle in Q. Also let FG, HK be drawn through E, M respec-
tively parallel to BB'.

We have then

QM _ : HM.MK = BM. MD : HM.MK

= BE.ED : FE.EG

= (BE. ED : EO'). (EO" : FE. EG),

= (CA' : CO'). (CO' : BC. CB')

= CA" : CB'

= PIV" : BN. NB'.
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Thercfore QM' : P__ = TIM. MK : BN. NB"

= OM _ : ONe;

whence, since PN, QM are parallel, OPQ is a straight line.

But Q is on the circumference of the circle on BD as

diameter; therefore OQ is a generator of the cone, and hence
P lies on the cone.

Thus the cone passes through all points on the ellipse.

Proposition 8.

Given an ellipse, a plane through one of its axes AA' and

perpendicular to the plane of the ellipse, a_l a line CO drawn
from C, the centre, in the given plane through AA' but not
perpendicular to AA', it is possible to find a cone with vertex 0

such that the given ellipse is a section of it [or, in other words,
to find the circular sections of the cone with vertex 0 whose
surface passes through the circumference of the ellipse].

By hypothesis, OA, OA" axe unequal. Produce OA' to D so
that OA = OD. Join AD, and draw FG through C parallel to it.

The given ellipse is to be supposed to lie in a plane per-
pendicular to the plane of the paper. Let BB' be the other

axis of the ellipse.

Conceive a plane through AD perpendicular to the plane
of the paper, and in it describe either (a), if CB'= FC. CG, a
circle with diameter AD, or (b), if not, an ellipse on AD as
axis such that, if d be the other axis,

d* : AD l = CB _ : FC. CG.

Take a cone with vertex O whose surface passes through

the circle or ellipse just drawn. This is possible even when the
curve is an elfipse, because the line from 0 to the middle point

of AD is perpendicular to the plane of the ellipse, and the
construction is effected by mcans of Prop. 7.

Let P be any point on the given ellipse, and we have only
to prove that P lies on the surface of the cone so described.
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Draw PA r perpendicular to AA'. Join OAr, and produce it

to meet AD in M. Through M draw HK parallel to A'A.

O

At

F G

D K

Lastly, draw MQ perpendicular to the plane of the paper

(and therefore perpendicular to both HK and AD) meeting the
ellipse or circle about AD (and therefore the surfi_ee of the eone)
in Q.

Then

QM" : HM. MK = (QM" : DM. MA). (DM. iliA : HM. MK)

= (d _ : AD'). (FC. CG : A'C. CA)

= (CB" : FC. CG). (FC. CG : A'C. CA)
= CB' : CA _

= PN 2 : A'N. NA.

Therefore, alternately,

QM' : PN'= HM. MK : A'.N. 2VA

= OJP : ON'.

Thus, since -PN, QM are parallel, OPQ is a straight line;
and, Q being on the surface of the cone, it follows that P is also
on the surface of the cone.

Similarly all points on the ellipse are also on the cone, and
the dlipse is therefore a section of the cone.



ON CONOIDS AND SPHEROIDS. 119

Proposition 9.

Given an ellipse, a pla_e through one of its axes and perpen-
dicular to that of the ellipse, and a straight line CO drawn from
the centre C of the ellipse in the given plane thro_ujh the axis but

_ot perpendicular to that axis, it "ts possible to fi,nd a cylinder
with axis OC such that the ellipse is a section of it [or, in other

words, to find the circular sectio_ of the cylinder with axis OC
whose surface pa._ses through the circumference of the given
ellipse].

Let AA' be an axis of the ellipse, and suppose the plane

of the ellipse to be perpendicular to that of the paper, so that
OC lies in the plane of the paper.

Q,
,%

D .°. / '

......... ° .... ,-"o -.. '", M i

A 0 N A

Draw AD, A'E parallel to CO, and let DE be the llne

through 0 perpendicular to both AD and A'E.

We have now three different cases according as the other

axis BB' of the ellipse is (1) equal to, (2) greater than, or
(3) less than, DE.

(1) Suppose BB' = DE.

Draw a plane through DE at right angles to OC, and in

this plane describe a circle on DE as diameter. Through this
circle describe a cylinder with axis OC.

This cylinder shall be the cylinder required, or its surface
shall pass through every point P of the ellip_.

For, if P be an)" point on the ellipse, draw PN perpendicular
to AA' ; through N draw NM l_rallel to CO meeting DE in

M, and through M, in the plane of the circle on DE as diameter,
draw MQ perpendicular to DE, meeting the circle in Q.
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Then, since DE = BB',

.PN" : AN. NA' = DO I : A C. CA'.

And DM. ME : AN. NA" -- DO" : AC',

since AD, NM, CO, A'E are parallel.

Therefore PN' = DM. ,lie

= QM _,

by the property of the circle.

Hence, since PN, QM are equal as well as parallel, PQ is

parallel to MN and therefore to CO. It follows that PQ is a
generator of the cylinder, whose surface accordingly passes
through P.

(2) IfBB'> DE, we take E' on A'E such that DE'=BB'
and describe a circle on DE' as diameter in a plane perpen-
dicular to that of the paper ; and the rest of the construction

and proof is exactly similar to those given for case (1).

(3) Suppose BB' < DE.

Take a point K on CO produced such that
DO: - CB'= OK '_.

From K draw KR perpendicular to the plane of the paper

and equal to CB.
Thus OR j = OK" + CB 1= OD*.

R

I)'" g "-,

In the plane containing DE, OR describe a circle on DE as
diameter. Through this circle (which must pass through R)
draw a cylinder with axis 0G.
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We have then to prove that, if P be any point on the given
ellipse, P lies on the cylinder so described.

Draw P-hr perpendicular to AA', and through N draw NM

parallel to CO meeting DE in M. In the plane of the circle on
DE as diameter draw MQ perpendicular to DE and meeting
the circle in Q.

Lastly, draw QH perpendicular to NM produced. QH will

then be perpendicular to the planc containing AC, DE, i.e. the
plane of the paper.

Now QH' : QM'= KI'P : OR 9, by similar trianglc_.

And QM _ : AN. 2_A ' = I)M. ME : AN. NA'
= OD _ : CA'.

Hence, ex aequali, since OR = OD,

QH" : AN.NA'= KR 9 : CA"

= CB _ : CA _

= PN _ : AN. NA'.

Thus Qtt= PAr. And QH, PN are also parallel. Accordingly

PQ is parallel to MN, and therefore to CO, so that PQ is a
generator, and the cylinder passes through P.

Proposition 10.

It was proved by the earlier geometers that any two cones
have to one another the ratio compounded of the ratios of their

bases and of their heights*. The same method of proof will

show that any segments of cones have to one another the ratio
compounded of the ratios of their bases and of their heights.

The proposition that any 'frustum' of a cylinder is triple

of the conical segment which has the same base as the frustum

and equal height is also proved in the same manner as the
proposition that the cylinder is triple of the cone which has
the same base as the cylinder and equal height_.

This follows from Euol. xm 11 and 14 taken together. Cf. On the Sphere

and Cyhnder I, Lemma 1.
This proposition was proved by Eudoxus, as stated in the preface to On

the Sphere and Cylinder i. Cf. EucL xr,. 10.



122 ARCHIMEDES

Proposition 1 1.

(1) If a paraboloid o/revolution be cut by a plane through,
or parallel to, the axis, the section will be a parabola equal to the

original parabola which by its revolution ge_erates the paraboloid.
And the axis of the section will be the intersection between the
cutti_g plane and the plane through the axts of the paraboloid

at right angles to the cutting plane.

If the paraboloid be cut by a plane at right angles to its
axis, the section will be a circle whose centre is on the axis.

(2) Ira hyperboloid of revolution be cut by a plane through
the axis, parallel to the axis, or through the centre, the section

wiU be a hyperbola, (a) if t/re sectio_t be through the axis, equal,
(b) if parallel to the axis, similar, (c) if through the centre,

not similar, to the original hyperbola which by its revolution
generates the hyperbolaid. And the axis _f the section will be

the intersection of the cutti_g plane and the plane through the
axis of the hyperboloid at right angles to the c_tting pla_e.

Any section of the hyperboloid by a plane at right angles to
the axis will be a circle wiwse centre is on the axis.

(3) If any of the spheroidal.figures be cut by a plane through
the axis or parallel to the axis, the section will be an ellipse,

(a) if the sectian be through the axis, equal, (b) if parallel to the
axis, similar, to the ellipse which by its revolution generates the

figure. And the axis of the section will be the intersection of the
cuttb_g plane a_xl the plane through the axis of the spheroid
at right angles to the cutting plane.

If the section be by a plane at right angles to the axis of the
spheroid, it will be a circle whose centre is on the axis.

(_) If any of the said.figures be cut by a plane through the

axis, and if a perpendicular be drawn to the plane of section
from any point on the surface of the figure but not on the sec_n,

that perpendicular will fall within the section.

"And the prooih of all these propositions are evident."*

* Cf. the Introduction, chapter HI. § 4.
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Propomition 1 _.

If a paraboloid of revolution be cut by a pla_e neither parallel
nor perpendicular to the axis, and if the plane through the axis

perpe_Micular to the cutting plane intersect it in a straight line
of which the portion intercepted within the paraboloid is R_R',
the section of the paraboloid vAll be an ellipse whose major axis.

is RR' a_ whose minor axis is equal to thv perpel_dicular
distance between the lines through R, 1_' parallel to the axis

of tt_e paraboloid.

Suppose the cutting plane to be perpendicular to the plane

of the paper, and let the latter be the plane through the axis
ANF of the paraboloid which intersects the cutting plane at

right azlgles in RR'. Let RH be parallel to the axis of the
paraboloid, and R'H perpendicular to RH.

Let Q be any point on the section made by the cutting
plane, and from Q draw QM perpendicular to RR'. QM will

thereibre be pe_7)eudicular to the plane of the paper.

Through M draw DMFE perpendicular to the axis A1VF

meeting the parabolic section made by the plane of the paper
in D, E. Then QM is perpendicular to DE, and, if a plane be
drawn through DE, QM, it will be perpendicular to the axis

and will cut the paraboloid in a circular section.

T

R

Since Q is on this circle,

Q_P--_l)M. ML'.

Again, if PT be that tangent to the parabolic section in the
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plane of the paper which is parallel to RR', and if the tangent
at A meet PT in O, then, from the property of the parabola,

DM.ME: RM. MR'=AO_: OP' [Prop. 3 (1)]

= AO' : OT _, since AN= AT.

Therefore QM 2 : RM. MR' = A 0 _ : 0I"

= R'H _ : RR",

by similar triangles.

Hence Q lies on an ellipse whose major axis is RR' and

whose minor axis is equal to R'H.

Propositions 13, 14.

If a hyperboloid of revolution be c_t by a plane meeting all
the generators of the enveloping cone, or if an ' oblong' spheroid
be cut by a plane not perpendicular to the a_'s', and if a plane

through the axis intersect the cutting plane at right angles in a
straight line on which the hyperboloid or spheroid intercepts

a length RR', then the section by the cutting plane will be an
ellipse whose major axis is RR'.

Suppose the cutting plane to bc at right angles to the
plane of the paper, and suppose the latter plane to be that

T

f

* Axchimedes begins Prop. 14 for the spheroid with the remark that, when .the

cutting plane passes through or is parallel to the axis, the case is clear (_Xev).

Cf. Prop. i1 (3).
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through the axis ANF which intersects the cutting plane
at right angles in RR'. The section of the hyperboloid or

spheroid by the plane of the paper is thus a hyperbola or ellipse
having A.NF for its transverse or major axis.

Take any point on the section made by the cutting plane,

as Q, and draw QM perpendicular to RR'. QM will then
be perpendicular to the plane of the paper.

Through M draw DFE at right angles to the axis A.N'F

meeting the hyperbola or ellipse in b, E; and through QM,
DE let a plane be described. This plane will accordingly be
perpendicular to the axis and will cut the hyperbeloid or

spheroid in a circular section.

Thus QM _= DM. ME.

Let PT be that tangent to the hyperbola or ellipse which

is parallel to RR', and let the tangent a_ A meet PT in O.

Then, by the property of the hyperbola or ellipse,

DM. ME : RM. MR' = OA _ : OP t,

or QM _ : RM. MR' = OA _ : OP _.

Now (1) in the hyperbola OA < OP, because AT< A_hr*, and
accordingly 0T< OP, while OA < OT,

(2) in the ellipse, if KK" be the diameter parallel to RR',
and BB" the minor axis,

BC. CB' : KC. CK" ---OA _: OP _;

and .BC. CB" < KC. CK', so that OA < OP.

Hence in both cases the locus of Q is an ellipse whose major
axis is RR'.

COR. 1. If the spheroid be a 'flat' spheroid, the section will
be an ellipse, and everything will proceed as before except that
RR' will in this case be the minor axis.

CoR. 2. In all conoids or spheroids parallel sections will be
similar, since the ratio OA*:OP _ is the same for all the

parallel sections.

With reference to this assumption cf. the Introduction, ohapter m. § S.
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Proposition 15.

(1) I/from any point on the surface of a conoid a line be

drawn, in the case of the paraboloid, parallel to the axis, and, in
the case of the hyperboloid, parallel to any line pas_ng through
the vertex of the enveloping cone, the part of the straight line

which is in the same direction as the convexity of the sttrface will
fall witIwut it, and the part which is in the other direction
within it.

For, if a plane be drawn, in the case of the paraboloid,

through the axis and the point, and, in the case of the hyperbo-
loid, through the given point and through the given straight

line drawn through the vertex of the enveloping cone, the
section by the plane will be (a) in the paraboloid a parabola
whose axis is the axis of the paraboloid, (b) in the hypcrboloid

a hyperbola in which the given line through the vertex of the
enveloping cone is a diameter*. [Prop. 1lJ

Hence the property follows from the plane properties of the
conics.

(2) If a plane touch a conoid without cutting it, it will

touch it at one point only, and the plane drawn through the
point of co_tact and the axis of the conoid will be at right

angles to the plane which touches it.

For, if possible, let the plane touch at two points. Draw

through each point a parallel to the axis. The plane passing
through both parallels will therefore either pass through, or bc
parallel to, the axis. Hence the section of the conoid made by
this plane will be a conic [Prop. 11 (1), ('2)], the two points

will lie on this conic, and the line joining them will lie within
the conic and therefore within the conoid. But this line

will be in the tangent plane, since the two points are in it.
Therefore some portion of the tangent plane will be within

the conoid; which is impossible, since the plane does not
cut it.

* Thereseems to be some errorin the text here, which says that "the
diameter"(i.e. axis)of thehyperbolais "the straightlinedrawnin the conoid
from the vertexof the cone." But this straightline is not, in general,the

of the aeetion.
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Therefore the tangent plane touches in one point only.

That the plane through the point of contact and the axis is

perpendicular to the tangent plane is evident in the particular
case where the point of contact is the vertex of the conoid.
For, if two planes through the axis cut it in two conics, the
tangents at the vertex iu both conics will be perpendicular
to the axis of the conoid. And all such tangents will be in the

tangent plane, which must therefore be perpendicular to the
axis and to any plane through the axis.

If the point of contact P is not the vertex, draw the plane
passing throllgh the axis AN and the point P.
It will cut the conoid in a conic whose axis is //I

AN and the tangent plane in a line DPE o_/
touching the conic at P. Dcaw PNP' perpen-
dicular to the axis, and draw a plane through it

also perpendicular to the axis This plane will
make a circular section an(| meet the tangent

plane in a tangent to the circle, which will
thereibre be at right angles to P_V. Hence the

tangent to the circle will be at right angles to the plane
containing P_V, AN; and it. follows that this last plane is

perpendicular to the tangent plane.

Proposition 16.

(1) If a plane touch any of the spheroidal figures without
cutting it, it will touch at one point only, and the plane through
the point of contact and the avis will be at right angles to the

tangent plane.

This is proved by thc same method as the last proposition.

(2) If a_y conoid or spheroid be cut by a plane through the
axis, aud if through any ta,gent to the resulting conic a plane be
erected at right angles to the plane of section, the plane so erected

will touch the canoid or spheroid in the same point as that in
which the line touches the conic.

For it cannot meet the surface at any other point. If it

did, the perpendicular from the second point on the cutting
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plane would be pexpendicular also to the tangent to the conic
and would therefore fall outside the surface. But it must fall

within it. [Prop. 11 (4)]

(3) If two parallel planes touch any of the spheroidal

fig_lres, the line joining tke points of contact will pass through
tke centre of the spheroid.

If the planes are at right angles to the axis, the proposition
is obvious. If not, the plane through the axis and one point of

contact is at right angles to the tangent plane at that point.
It is therefore at right angles to the parallel tangent plane, and
therefore passes through the second point of contact. Hence

both points of contact lie on one plane through the axis, and
the proposition is reduced to a plane one.

Proposition 17.

If two parallel planes touch any of the spheroidal figures,
and another plane be drawn parallel to the ta_gent pla_s and

passing through tke centre, the line drawn through any point of
the circumference of the resultb_g section parallel to the chord

of contact of the tangent planes will fall outside the spheroid.

This is proved at once by reduction to a plane proposition.

Archimedes adds that it is evident that, if the plane
parallel to the tangent planes does not pass through the
centre, a straight line drawn in the manner described will

fall without the spheroid in the direction of the smaller
segment but within it in the other direction.

Proposition 18.

Any spheroidal fi_lure which is cut by a plane through the
centre is divided, both as regards its surface and its volume, into
two equal parts by that plane.

To prove this, Archimedes takes another equal and similar
spheroid, divides it similarly by a plane through the centre, and
then uses the method of application.



ON CONOIDSAND SPHEROIDS. 129

Propositions 19, 20.

Given a segment cut off by a plane from a paraboloid or
hyperboloid of revolutlm_, or a segment of a spheroid less than

half the spheroid also cut off by a plane, it is possible to inscribe
in the segment o_e solid figure and to circumscribe about it
another solid figure, each made up of cylinders or 'frusta' of

cylinders of equal height, and s_wh that the circumscribed figure
exceeds the inscribed figure by a volume less than that of any
given solid.

Let the plane base of the segment be perpendicular to the
plane of the paper, and let the plane of the paper be the plane

through the axis of the conoid or spheroid which cuts the base
of the segment at right angles in BC. The section in the plane
of the paper is then a conic BAC. [Prop. 11]

Let EAF be that tangent to the conic which is parallel to
BC, and let A be the point of contact. Through EA.F draw
a plane parallel to the plane through BC bounding the
segment. The plane so drawn will then touch the conoid

or spheroid at A. [Prop. 16]

(l) If the base of the segment is at right angles to the

axis of the conoid or spheroid, A will be the vertex of the
conoid or spheroid, and its axis AD will bisect BC at right
angles.

(2) If the base of the segment is not at right angles to the
axis of the conoid or spheroid, we draw AD

(a) in the paraboloid, parallel to the axis,

(b) in the hyperboloid, through the centre (or the vertex of
the enveloping cone),

(c) in the spheroid, through the centre,

and in all the cases it will follow that AD bisects BC in D.

Then A will be the vertex of the segment, and AD will be
its axis.

Further, the base of the segment will be a circle or an

ellipse with BC as diameter or as an axis respectively, and
with centre D. We can therefore describe through this circle

n._. 9



130 ARCHIMEDES

or ellipse a cylinder or a ' frustum' of a cylinder whose axis is
AD. [Prop. 9]

E A fi F

P L I

iO M H

B D 0

Dividing this cylinder or frustum continually into equal

parts by planes parallel to the base, we shall at length an.lye
at a cylinder or frustum less in volume than any given solid.

Let this cylinder or frustum be that whose axis is OD, and
let AD be divided into parts equal to OD, at L, M, .... Through

L, M,... draw lines parallel to BC meeting the conic in P, Q,...,
and through these lines draw planes parallel to the base of the

segment. These will cut the conoid or spheroid in circles or
similar ellipses. On each of these circles or ellipses describe
two cylinders or frusta of cylinders each with axis equal to OD,

one of them lying in the direction of A and the other in the
direction of D, as shown in the figure.

Then the cylinders or frusta of cylinders drawn in the
direction of A make up a circumscribed figure, and those ill
the direction of D an inscribed figure, in relation to the

segment.

Also the cylinder or frustum PG in the circumscribed figure

is equal to the cylinder or frustum PH in the inscribed figure,
QI in the circumscribed figure is equal to QK in the inscribed

figure, and so on.

Therefore, by addition,

(circumscribed fig.) = (inscr. fig.)

+ (cylinder or frustum whose axis is 01)).

But the cylinder or frustum whose axis is OD is less than

the given solid figure ; whence the proposition fi)llows.

"Having set out these preliminary propositions, let us
proceed to demonstrate the theorems propounded with reference
to the figure_"
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Propositions _1, _.

Any segment of a paraboloid of re_ol_tioa is half as large
again as the cone or segmo_t of a cone which has the same base
and the same axis.

Let the base of the segment be perpendicular to the plane of
the paper, and let the plane of the paper be the plane through
the axis of the paraboloid which cuts the base of the segment

at right angles in BC and makes the parabolic section BAC.

Let EF be that tangent to the paxabola which is parallel to
BC, and let A be the point of contact.

Then (1), if the plane of the base of the segment is

perpendicular to the axis of the paraboloid, that axis is the
line AD bisecting BC at right angles in D.

(2) If the plane of the base is not perpendicular to the

a_is of the paraboloid, draw AD parallel to the axis of the
paraboloid. AD will then bisect BC, but not at right angles.

Draw through EF a plane parallel to the base of the seg-
ment. This will touch the paraboloid at A, and A will be
the vertex of the segment, AD its axis.

The base of the segment will be a circle with diameter BC
or an ellipse with BC as major axis.

Accordingly a cylinder or a frustum of a cylinder can be
found passing through the circle or ellipse and having AD for
its axis [Prop. 9]; and likewise a cone or a segment of a cone
can be drawn passing through the circle or ellipse and having
A for vertex and AD for axis. [Prop. 8]

Suppose X to be a cone equal to ,+ (cone or segment of

cone ABC). The cone X is therefore equal to half the cylinder
or frustum of a cylinder EC. [Cf. Prop. 10]

We shall prove that the volume of the segment of the
paraboloid is equal to X.

If not, the segment must be either greater or less than X.

I. If possible, let the segment be greater than X,

We c_n then inscribe and circumscribe, as in the last

9--2
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proposition, figures made up of cylinders or frusta of cylinders
with equal height and such that

(circumscribed fig.) - (inscribed fig.) < (segment) - X.

Let the greatest of the cylinders or frusta forming the
circumscribed figure be that whose base is the circle or ellipse
about BC and whose axis is O.D, and let the smallest of them be

that whose base is the circle or ellipse about PP' and whose
axis is AL.

Let the greatest of the cylinders tbrming the inscribed

figure be that whose base is the circle or ellipse about RR' and
whose axis is OD, and let the smallest be that whose base is

the circle or ellipse about PP' and whose axis is ZM.

F A E

-7

C D B

Produce all the plane bases of the cylinders or frusta to
meet the surface of the complete cylinder or frustum EC.

Now, since

(circumscribed fig.) - (inscr. fig.) < (segment) - X,

it follows that (inscribed figure) > X .................. (a).

Next, comparing successively the cylinders or frusta with

heights equal to 01) and respectively forming parts of the
complete cylinder or frustum EC and of the inscribed figure,
we have

(first cylinder or frustum in EC) : (first in inscr, fig.)

--BD _ : RO"

_AD:AO

= BD : TO, where A B meets OR in T.

And (second cylinder or frustum in EC) : (second in inscr, fig.)

.=-HO : SN, in like manner,
and so on.
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Hence [Prop. 1] (cylinder or frustum EC) : (inscribed figul_)

= (BD+ HO+ ...) : (TO + SN+ ...),

where BD, HO .... are all equal, and BD, TO, $2( .... diminish in
arithmetical progression.

But [Lemma preceding Prop. 1]

BD+ HO +... > 2(1"0 +SN+...).

Therefore (cylinder or frustum EC) > 2 (inscribed fig.),

or X > (inscribed fig.) ;

which is impossible, by (a) above.

II. If possible, le_ the segment be less than X.

In this case we inscribe and circumscribe figures as before,
but such that

(circumscr. fig.) -(inscr. fig.) < X - (segment),
whence it follows that

(circumscribed figure) < X ............... (/3).

And, comparing the cylinders or frusta making up the
complete cylinder or frustum CE and the circumscribed figure

respectively, we have

(first cylinder or frustum in CE) : (first in circumscr, fig.)
= BJ) _ : BD _

= BD : BD.

(second in CE) : (second in circumscr, fig.)
= HO e : RO"

=AD:AO

= HO : TO,
and so on.

Hence [Prop. 1]

(cylinder or frustum CE) : (circumscribed fig.)

= (BD + HO +...) : (BD + TO +...),

< 2 : 1, [Lemma preceding Prop. 1]
and it follows that

X < (circumscribed fig.);

which is impossible, by (/3).

Thus the segment, being neither greater nor less than X, is
equal to it, and therefore to ] (cone or segment of cone ABG_.
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Proposition _3.

If from a paraboloid of revolution two segme_2ts be cut off,
one by a plane perpendicular to the axis, the other by a plane not

perpendicular to the axis, and if the axes of the segments are
equal, the segments will be equal in volume.

Let the two planes be supposed perpendicular to the plane
of the paper, and let the latter plane be the plane through the
axis of the paraboloid cutting the other two planes at right

angles in BB', QQ' respectively and the paraboloid itself in the
parabola QPQ'B'.

Let AN, PVbe the equal axes of the segments, and A, P
their respective vertices.

A

BP

Draw QL parallel to A_ r or .PV and Q'L perpendicular
to QL.

Now, since the segments of the parabolic section cut off by

BB', QQ' have equal axes, the triangles A BB', PQQ" are equal
[Prop. 3]. Also, if QD be perpendicular to P V, QD = B2g (as
in the same Prop. 3).

Conceive two cones drawn with the same bases as the

segments and with A, P as vertices respectively. The height
of the cone PQQ' is then PK, where PK is perpendicular to

QQ'.
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Now thc cones are in the ratio compounded of the ratios of
their bases and of their heights, i.e. the ratio compounded of
(1) the ratio of the circle about BB' to the ellipse about QQ',

and (2) the ratio of A2_r to PK.

That is to say, we have. by means of Props. 5, 12,

(cone ABB') : (cone PQQ') = (BB '2 : QQ'. Q'L). (AN : PK).

And BB'= 2BN = 2QD = Q'L, while QQ' = 2QV.
Therefore

(cone ABB') : (cone PQQ')= (QD : Qv). (AN:/_K)
= (PK : PV). (A.¥ : PK)
=A3r: PV.

Since AN= PV, the ratio of the cones is a ratio of equality.

and it follows that the segments, being each half a., large again
as the respective cones [Prop. 22], are equal.

Proposition _4.

I/from a paraboloid of revolution two segments be cut off by
planes drawT_ in any manner, the segments will be to one another

as the squares on their axes.

For let the paraboloid be cut by a plane through the axis
in the parabolic section P'PApp', and let the axis of the
parabola and paraboloid be ANN'.

Measure along ASr2V ' the lengths AN', A_hr' equal to the

respective axes of the given segments,
and through N. N' draw planes perpen- "/;/

dicular to the axis, making circular e/_J"
sections on Pp, P'p' as diameters re-
spectively. With these circles as bases
and with the common vertex A let two

cones be described, i u'A

Now the segments of the paraboloid
whose bases arc the circles about Pp,

P'p' are equal to the given segments
respectively, since their respective axes
are equal [Prop. 23]; and, since the

segments APp, AP'p" are half as large p'
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again as the cones APp, AP'T" respectively, we have only
to show that the cones are in the ratio of AN' to AN '_.

But

(cone APp) : (cone AP'p') -- (PN' : P'IV"). (AN : AN')

= (AN: AN'). (AN : AN')

= AN _ : AN '_;

thus the proposition is proved.

Propositions _5, Q6.

In any hypvrboloid of revolution, if A be the vertex and AD

the axis of any segment cut off by a plane, and if CA be the
semidiameter of the hyperboloid through A (CA being of course
in the same straight line with AD), then

(segment) : (cone with same base and axis)

= (AD + 3CA) : (AD + 2CA ).

Let the plane cutting off the segment be perpendicular to
the plane of the paper, and let the latter plane be the plane

through the axis of the hyperboloid which intersects the cutting
plane at right angles in BB', and makes the hyperbolic
segment BAB'. Let C be the centre of the hyperboloid (or

the vertex of the enveloping cone).

Let EF be that tangent to the hyperbolic section which is

parallel to BB'. Let EF touch at A, and join CA. Then CA
produced will bisect BB' at D, CA will be a semi-diameter of
the hyperboloid, A will be the vertex of the segment, and AD
its axi_ Produce A C to A' and H, so that A C-- CA' = A "H.

Through EF draw a plane parallel to the base of the seg-
ment Th£_ plane will touch the hyperboloid at A.

Then (1), if the base of the segment is at right angles to the
axis of the hyperboloid, A will be the vertex, and AD the axis,
of the hyperboloid as well as of the segment, and the base of the

segment will be a circle on BB' as diameter.
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(2) If the base of the segment is not perpendicular to the

axis of the hyperboloid, the base will be an ellipse on BB'as
major axis. [Prop. 13]

H

_._____/P. /_ _ ../\/
B D B"

w_ '#

b,Ao,
li

a _
a IAA')

Then we can draw a cylinder or a frustum of a cylinder
EBB'F passing through the circle or ellipse about BB' and
having AD for its axis; also we can describe a cone or a

segment of a cone through the circle or ellipse and having A
for i_ vertex.

We have to prove that

(segment ABB') : (cone or segment of cone ABB') = HD : A 'D.
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Let V be a cone such that

V : (cone or segment of cone ABB') = HD : A'D ....... (a)

and we have to prove that V is equal to the segment.

Now

(cylinder or frustum EB') : (cone or segmt, of cone ABB') = 3 : I.

Therefore, by means of (a),
HD

(cylinder or frustum EB') : V = A'D : _-- ...... (_).

If the segment is not equal to V, it must either be greater
or less.

I. If possible, let the segment be greater than V.

Inscribe and circumscribe to the segment figures made up

of cylinders or frusta of cylinders, with axes along AD and all
equal to one another, such that

(circumscribed fig.) - (inscr. fig.) < (segmt.) - IT,

whence (inscribed figure)> V ................... (7)-

Produce all the planes forming the bases of the cylinders or

frusta of cylinders to meet the surface of the complete cylinder
or frustum EB'.

Then, if ND be the axis of the greatest cylinder or frustum
in the circumscribed figure, the complete cylinder will be

divided into cylinders or frusta each equal to this greatest
cylinder or frustum.

Let there be a number of straight lines a equal to AA' and

as many in number as the parts into which AD is divided by
the bases of the cylinders or frusta. To each line a apply a

rectangle which shall overlap it by a square, and let the greatest
of the rectangles be equal to the rectangle AD. A'D and thc
least equal to the rectangle AL. A'Z ; also let the sides of the

overlapping squares b, p, q.... 1 be in descending arithmetical
progression. Thus b, p, q.... 1 will be respectively equal to AD,
AN, AM,...AL, and the rectangles (ab + b_),(ap + p') .... (al +/')

will be respectively equal to AD. A'D, AN. A'N,...AL. A'L.
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Suppose, further, that we have a series of spaces ,S each
equal to the largest rectangle AD. A'D and as many in number

as the dimiIfishing rectangles.

Comparing now the successive cylinders or frusta (1) in the
complete cylinder or frustum EB' and (2) in the inscribed
figure, beginning from the base of the segment, we have

(flint cylinder or fi'ustum in EB') : (first in inscr, figure)

= BD' : .PIV_

= AD. A'D : AN'. A'N', from the hyperbola,

= S : (ap + p').

Again

(second cylinder or frustum in EB') : (second in inser, fig.)

= BD': QM"

= AD. A'D : AM. A'M

= S : (a_t + q"),
an(] so on.

The last cylinder or frustum In the complete cylinder or
frustum EB' has no cylinder or fi"ustum corresponding to it ill
the inscribed figure.

Combining the proportions, we have [Prop. 1]

(cylinder or frustum Eft) : (inscribed figure)

= (sum of all the spaces S) : (ap + p_) + (aq + q') +...

> (a + b) : 2 + [Prop. 2]

HD since a = AA', b = AD,> A'D:-_ ,

> (EB') : V, by (B) above.

Hence (inscribed figure) < V.

But this is impossible, because, by (7) above, the inscribed
figure is greater than V.
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II. Next suppose, if po_ible, that the segment is less
than V.

In this case we circumscribe and inscribe figures such that

(circumscribed fig.)- (inscribed fig.) < V-(segment),

whence we derive

V > (circumscribed figure) ............... (3).

We now compare successive cylinders or frusta in the

complete cylinder or frustum and in the circumscribed figure;
and we have

(first cylinder or frustum in EB') : (first in circumscribed fig.)

=S:S

---S : (ab + b*),

(second in EB') : (second in circumscribed fig.)

= S : (ap +p'),
and so on.

Hence [Prop. 1]

(cylinder or frustum EB') : (circumscribed fig.)

= (sum of all spaces S) : (ab + b '_)+ (ap + p*) +...

<(a+b) : (2+_) [Prop. 2]

< A'D : HD
3

< (EB') : V, by (B) above.

Hence the circumscribed figure is greater than V; which is

impossible, by ($) above.

Thus the segment is neither greater nor less than V, and is
therefore equal to it.

Therefore, by (a),

(segment ABB') : (cone or segment of cone ABB_

= (AD+ 3aA) : (AD+ 20A).
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Propositions _Y, _8, _9, 30.

(1) In any spheroid whose centre is C, if a plane meeting
the axis cut off a segment not greater than half the spheroid and

having A for its vertex and AD for its axis, and if A'D be the
axis of the remaining segment of the spheroid, then

(first segmt.) : (cone or segmt, of cone with same base and axis)

= CA + A'D : A'D

[= 3CA - AD : 2CA - ADJ.

(2) As a particular case, if the plane passes through the

centre, so that the segment is half the spheroid, half the spheroid
is double of the cone or segme_nt of a cone which has the same
vertex and axis.

Let the plane cutting off the segment be at right angles to
the plane of the paper, and let the latter plane be the plane

through the axis of the spheroid which intersects the cutting
plane in BB' and makes the elliptic section AI_A'B'.

Let E); E'F' be the two tangents to the ellipse which are
parallel to BB; let them touch it in A, A', and through the
tangents draw planes parallel to the base of the segment.

These planes will touch the spheroid at A, A', which will
be the vertices of the two segments into which it is divided.
Also AA" will pass through the centre C and bisect BB"
in D.

Then (1) if the base of the segments be perpendicular to
the axis of the spheroid, A, A' will be the vertices of the

spheroid as well as of the segments, AA' will be the axis
of the spheroid, and the base of the segments will be a circle on
BB' as diameter;

(2) if the base of the segments be not perpendicular to the

axis of the spheroid, the base of the segments will be an
ellipse of which BB' is one axis, and AD, A'D will be the

axes of the segments respectively.
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We can now draw a cylinder or a frustum of a ey]inder

EBB'.F through the circle or ellipse about BB' and having .AD
for its axis; and we can also draw a cone or a segment of
a cone passing through the circle or ellipse about BB' and
having A for its vertex.

E A F

0

C

a

a L a 8

x b

d d d d

We have then to show that, if CA" be produced to H so
that CA'= .,4'H,

(segment .ABB') :(cone or segment of cone ABB')= HD: A'D.

Let V be such a cone that

V : (cone or segment of cone ABB') = HD : A'D ... (a) ;

and we have to show that the segment ABB' is equal to Ir.



ON CONOIDSAND SPHEROIDS. ]'_

But, since

(cylinder or frustum EB') : (cone or segment of cone ABB')
----3: 1,

we have, by the aid of (a),
HD

(cylinder or frustum EB') : V = A'D : _- ...... (,8).

Now, if the segment ABB' is not equal to V, it must
bc either greater or less.

I. Suppose, if possible, that the segment is greater
than V.

Let figures be inscribed and circumscribed to the segment
consisting of cylinders or frusta of cylinders, with axes along

AD and all equal to one another, such that

(circumscribed fig.) - (inscribed fig.) < (segment) - V,
whence it follows that

(inscribed fig.) > V ................ (7).

Produce all the planes forming the b,_es of the cyhnders or
frusta to meet the surface of the complete cylinder or frustum

EB'. Thus, if ND be the axis of the greatest cylinder or

frustum of a cylinder in the circumscribed figure, the complete
cylinder or frustum EB' will be divided into cylinders or frusta

of (;ylinders each equal to the greatest of those in the circum-
scribed figure.

Take straight lines da' each equ_l to A'D and as many in
number as the parts into which AD is divided by the bases of'
the cylinders or frusta, and measure da along da' equal to AD.
It follows that aa'= 2CD.

Apply to each of the lines a'd rectangles with height equal
to ad, and draw the squares on each of the lines ad as in

the figure. Let S denote the area of each complete rectangle.

From the flint rectangle take away a gnomon with breadth

equal to AN (i.e. with each end of a length equal to AN);

take away from the second rectangle a gnomon with breadth
equal to AM, and so on, the last rectangle having no gnomon
taken from it.
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Then

the first gnomon = A'D. AD -'N.D. (A'D - AN)

= A'D. AN + ND. AN

= A_. A'A r.

Similarly,

the second gnomon = A21l. A'M,

and soon.

And the last gnomon (that in the last rectangle but one) is
equal to 2tL. A'L.

Also, after the gnomons are taken away from the successive
rectangles, the remainders (which we will call R,, R, .... R,,

where n is the number of rectangles and accordingly R,, = S)
are rectangles applied to straight lines each of length an' and
"exceeding by squares" whose sides axe respectively equal
to DN, DM,... DA.

For brevity, let DN be denoted by x, and aa' or 2CD by c,
so that R_ = cx + x_, Rg = c. 2x + (2x)',...

Then, comparing successively the cylinders or frusta of
cylinders (1) in the complete cylinder or frustum EB' and

(2) in the inscribed figure, we have

(first cylinder or frustum in EB') : (first in inscribed fig.)
= BD' : PN _

= AD. A'D : AN. A'N

= S : (first gnomon) ;

(second cylinder or frustum in EB') : (second in inscribed fig.)

= S : (second gnomon),
and so o_

The last of the cylinders or frusta in the cylinder or
frustum EB' has none corresponding to it in the inscribed

figure, and there is no corresponding gnomon.

Combining the proportions, we have [by Prop. 1]

(cylinder or frustum EB') : (inscribed fig.)

= (sum of all spaces S) : (sum of gnomons).
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Now the differences between S and the successive gnomons
are R,, R_, ... Rn, while

R, =cx+ x',

R, = c. 2x + (2x)',
..... ,o°., ............

R,, = cb + b_= S,
where b = nx = AD.

Hence [Prop, 2]

(sum of all spaces 8) : (R, + R_ +... + R, 0 < (c + b) : _ +
0

it follows that

>A'D: HD.
3

Thus (cylinder or frustum El?') : (inscribed fig.)

> A'D : HD
3

> (cylinder or frustum EB') : V,
from (B)above.

Therefore (inscribed fig.) < V;

which is impossible, by (_/) above.

Hence the segment ABB' is not greater than IT.

II. If possible, let the segment ABB' be less than V.

We then inscribe and circumscribe figures such that

(circumscribed fig.) - (inscribed fig.) < V- (segment),

whence V > (circumscribed fig.) ................. (b).

In this case we compare the cylinders or frusta in (EB')

with those in the circumscribed fig_are.

Thus

(first cylinder or frustum in EB') : (first in circumscribed fig.)

=S:S;

(second in EB') : (second in circumscribed fig.)

= S : (first gnomon),
and so on.

_. A. 10
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Lastly (last in EB') : (last in circumscribed fig.)

= S : (last gnomon).
_'ow

IS + (all the gnomons)} = nS - (_R__- R_ +.. + R_--1).

And nS:R1+R,+...+R__I>(c+b): 2 +g ' [Prop. 2]
so that

_S : IS + (all the gnomons)} < (c + b) : + _ .

It follows that, if we combine the above proportions as in

Prop. 1, we obtain

(cylinder or frustum EB') : (circumscribed fig.)

(2 2b\<(c+b): + if)
HD

< A'D: --
3

< (EB'): V, by (/7) above.

Itenee the circumscribed figure is greater than V; which is
impossible, by (8) above.

Thus, since the segment ABB' is neither greater nor less
than V, it is equal to it; and the proposition is proved.

1,2) The particular ease [Props. 27, 28] where the segment
is half the spheroid differs from the above in that the distance

CD or c/2 vanishes, and the rectangles cb + b_are simply squares
(b_), so that the gnomons are simply the differences between b"
and x', b' and (2x)', and so on.

Instead therefore of Prop. 2 we use the Lemma to Prop. 2,
Cor. 1, given above [On Spirals, Prop. 10], and instead of the

rutio (c + b) : (2 + 2-bbg) we obtain the ratio 3 : 2, whcnee

(segment ABB') : (cone or segment of cone ABB') = 2 : 1.

[This result can also be obtained by simply substituting
UA for AD in the ratio (3CA- AD) : (2CA -AD).]
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Propositions 31, 3_.

If a plane d_vide a spheroid into two unequal segments, and
if AN, A'N be the axes of the lesser and greater segments

respectively, while C is the centre of the spheroid, then

(greater segmt.) : (co_e or segmt, of cone with same base and axis)

= CA + AN : AN.

Let the plane dividing the spheroid be that through PP'

perpendicular to the plane of the paper, and let the latter plane
be that through the axis of the spheroid which intersects the
cutting plane in PP' and makes the elliptic section PAP'A'.

B

P

Draw the tangents to the ellipse which are parallel to PP';

let them touch the ellipse at A, A', and through the tangents
draw planes parallel to the basc of the segments. These plane_

will touch the spheroid at A, A', the line AA" will pass
through the centre C and bisect PP' in N, while AN, A'N will
be the axes of the segments.

Then (1) if the cutting plane be perpendicular to the axis
of the spheroid, AA' will be that axis, and A, A' will be the
vertices of the spheroid as well as of the segments. Also the

sections of the spheroid by the cutting plane and all planes
parallel to it will be circles.

(2) If the cutting plane be not perpendicular to the axis,
10--2
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the base of the segments will be an ellipse of which PP' is an
axis, and the sections of the spheroid by aH planes Pal_llel
to the cutting plane will be similar ellipses.

Draw a plane through C parallel to the base of the segments

and meeting the plane of the paper in BB'.

Construct three cones or segments of cones, two having A

for their common vertex and the plane sections through .PP',
BB' for their respective bases, and a third having the plane

section through P_P' for its base and A' for its vertex.

Produce CA to H and CA' to H' so that

AH = A'H' = CA.

We have then to prove that

(segment A'P.P') : (cone or segment of cone A'PP')

= CA + AN : AN

=NH :AN.

Now half the spheroid is double of the cone or segment of a
cone ABB' [Props. 27, 28]. Therefore

(the spheroid)= 4 (cone or segment of cone ABB').

But

(cone or segmt, of cone ABB') : (cone or segmt, of cone APP')

= (CA : AN). (BC' : PN')

=(ca : AZ¢).(CA.CA':A V.
If we measure AK along AA' so that

AK : AC= AC : A_¥,

we have AK. A'N : AC. A'N = CA : AN,

and the compound ratio in (a) becomes

(AK. A'N : CA. A'N). (CA. CA' : AN. A'N),

i.e. AK. CA" : AN. A'N.
Thus

(cone or segmt, of cone ABB') : (cone or segmt, of cone APP')

=AK. CA' : AN. A'.N'.
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But (cone or segment of cone APP') : (segment APP')

= A'N : NH' [Props. 29, 30]
= AN. A'_hr : AN. NH'.

There[ore, ex aequali,

(cone or segment of cone ABB') : (segment APP')

= AK. CA' : AN. ¢Vtt',

so that (spheroid) : (segment APP')

= HH'. AK : AN. NH',

since HH" = 4 CA'.

Hence (segment A'PP') : (segment APP')

= (HH'. AK - AN. ArH') : AN. NH'

= (AK.NH + ¢VH'.NK) : AN.NH'.
Further,

(segment APP') : (cone or segment of cone APP')
= NH' : A_V

= AN..NH' : A -V. A'N,
and

(cone or segmt, of cone APP') : (cone or segmt, of cone A'PP')
= AN : A'.N

= AN. A'N : A 'N "_.

From the last three proportions we obtain, ex aequali,

(segment A'.P.P') : (cone or segment of cone A'p_D')

---(AK. NH + NH'. NK) : A 'N _

= (AK. NH + NH'. NK) : (CA _+ Nit'. CN)

= (AK..NH + ._'H'..NK) : (AK. AN+ NH'. GN)...(B).

But

AK. ,¥H : AK. AN -- NH : AN

= CA + AN : AN

=AK +CA : CA

(since AK : AC-- AC : AN)
= IlK : CA

= IlK- NH : CA - AN

---NK : CN

= NIl'. NK : NH'. CN.
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Hence the ratio in (/3) is equal to the ratio

AK. _ATtI: AK. AN, or Nil : AN.

Therefore

(segment A'P-P') : (cone or segment of cone A'PP')

=NH:AN

= CA + AN : AN.

[If (x, y) be the coordinates of P referred to the conjugate
diameters AA', BB" as axes of x, y, and if 2a, 2b be the lengths

of the diameters respectively, we have, since

(spheroid) - (lesser segment) = (greater segment),

4.ab _ 2a+x &(a_x)=2a_-x y2(a+x):a+x "_ a--x "

and the above proposition is the geometrical proof of the truth

of this equation where x, y are connected by the equation



ON SPIRALS.

"ARcttlMEDES to Dositheus greeting

Of most of the theorems which I sent to Conon, and of

which you ask me from time to time to send you the proofs, the
demonstrations are already before you in the books brought to
you by Heracleides; and some more are also contained in that

which I now send you. Do not be surprised at my taking a
considerable time beibre publishing these proofs. This has
been owing to my desire to communicate them first to persons

engaged in mathematical studies and anxious to investigate
them. In tkct, how many theorems in geometry which have

seemed at first impracticable are in time successfully worked out!
Now Conon died before he had sufficient time to investigate
the theorems referred to; otherwise he would have di_overed

and made manifest all these things, and would have enriched
geometry by many other discoveries besides For I know well

that it was no common ability that he brought to bear on
mathematics, and that his industry was extraordinary. But,

though many years have elapsed since Cohort's death, I do not
find that any one of the problems has been stirred by a single

person. 1 wish now to put them in review one by one,
particularly as it happens that there are t_o included among
them which are impossible of realisation _ [and which may

serve as a warning] how those who claim to discover every-
thing but produce no prooi_ of the same may be confuted as

ha_ing actually pretend_l to discover the impossible

* Heibergreads_t_o_8__roSea6t_a,butF hasr_o_, sothatthetruereading
is perhaps7_kov_8__ro'rL_e5_. The meaningappearsto be simply'wrong.'
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What are the problems I mean, and what are those of which
you have already received the proofs, and those of which the

proois are contained in this book respectively, I think it proper
to specify. The first of the problems was, Given a sphere, to find
a plane area equal to the surface of the sphere ; and this was

first made manifest on the publication of the book concerning the
sphere, for, when it is once proved that the surface of any sphere
is four times the greatest circle in the sphere, it is clear that it

is possible to find a plane area equal to the surface of the sphere.
The second was, Given a cone or a cylinder, to find a sphere

equal to the cone or cylinder; the third, To cut a given sphere
by a plane so that the segments of it have to one another an

assigned ratio ; the fourth, To cut a given sphere by a plane so
that the segments of the surface have to one another an assigned
ratio ; the fifth, To make a given segment of a sphere similar to

a given segment of a sphere* ; the sixth, Given two segmenk_ of
either the same or different spheres, to find a segment of a sphere

which shall be similar to one of the segments and have its
surface equal to the surface of the other segment. The seventh
was, From a given sphere to cut off a segment by a plane so

that the segment bears to the cone which has the same base as
the segment and equal height an assigned ratio greater than

that of three to two. Of all the propositions just enumerated
Heracleides brought you the proofs. The proposition stated
next after these was wrong, viz. that, if a sphere be cut by a

plane into unequal parts, the greater segment will have to the
less the duplicate ratio of that which the greater surface has to

the less. That this is wrong is obvious by what I sent you
before ; for it included this proposition : If a sphere be cut into

unequal parts by a plane at right angles to any diameter in the
sphere, the greater segment of the surface will have to the less

the same ratio as the greater segment of the diameter has
to the less, while the greater segn_ent of the sphere has to the
less a ratio less than the duplicate ratio of that which the

" r_ _oOt_r_,Sl,a _al_, r_ $_g_v_r_i_Lar_$_pa_ $poL_a_, i.e. to make a
segment of a sphere szmil_r to one given segment and equal in content to
another _ven segment. [Cf. On the Sphere and Cylinder, IL 5.]
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greater surface has to the less, but greater than the sesqui-
alterate* of that ratio. The last of the problems was also wrong,
via that, if the diameter of any sphere be cut so that the square

on the greater segment is triple of the square on the lesser
segment, and if through the point thus arrived at a plane be
drawn at right angles to the diameter and cutting the sphere,

the figure in such a form as is the greater segment of the sphere
is the greabest of all the segments which have an equal surface.
That this is wrong is also clear from the theorems which I

before sent you. For it was there proved that the hemisphere
is the greatest of all the segments of a sphere bounded by an
equal surface.

After these theorems the fi)llowing were propounded con-
cernlng the cone-_'. If a section of a right-angled cone [a
parabola], in which the diameter [axis] remains fixed, be made to
revolve so that the diameter [axis] is the axis [of revolution],

let the figure described by the section of the right-angled cone
be called a conoid. And if a plane touch the conoidal figure
and another plane drawn parallel to the tangent plane cut off

a segment of the conoid, let the base of the segment cut off be

defined as the cutting plane, and the vertex as the point in which
the other plane touches tbe conoid. Now, if the said figure be
cut by a plane at right angles to the axis, it is clear that the
section will be a circle; but it needs to be proved that the

segment cut off will be half as large again as the cone which has
the same base as the segment and equal height. And if two

segments be cut off from the conoid by planes drawn m any
manner, it is clear that the sections will be sections of acute-

angled cones [ellipses] if the cutting planes be not at right
angles to the axis; but it needs to be proved that the
segments will bear to one another the ratio of the squares on
the lines drawn from their vertices parallel to the axis to meet

the cutting planes. The proofs of these propositions axe not
yet sent to you.

After these came the following propositions about the spiral,

* (hd_,ov) p_l_o,_ _ _m6Mov ro_, _ _;_* x.r.X., i.e. a ratio greater th_n (the

ratio o! the surfaces)_. See On the Sphere and Cylinder, II. 8.
This should be presumably ' the cono/d,' not ' the cone.'



154 ARCHIMEDES

which are as it were another sort of problem having nothing
in common with the foregoing; and I have written out the
proofs of them for you in this book. They are as follows. If a

straight line of which one extremity remains fixed be made to

revolve at a uniform rate in a plane until it returns to the
position from which it started, and if, at the same time as the
straight line revolves, a point move at a uniform rate along the

straight hne, starting from the fixed extremity, the point will
describe a spiral in the plane. I say then that the area
bounded by the spiral and the straight line which has returned

to the position from which it started is a third part of the circle
described _ith the fixed point as centre and with radius the

length traversed by the point along the straight line during the
one revolution. And, if a straight line touch the spiral at the

extreme end of the spiral, and another straight line be drawn at
right angles to the line which has revolved and resumed its
position from the fixed extremity of it, so as to meet the

tangent, I say that the straight line _ drawn to meet it is
equal to the circumference of the circle. Again, if the revolving
line and the point moving along it make sevelul revolutions

and return to the position from which the straight line started,
I say that the area added by the spiral in the third revolution
will be double of that added in the second, that in the fburth

three times, that in the fifth four times, and generally the areas
added in the later revolutions will be multiples of that added in
the second revolution according to the successive numbers,

while the area bounded by the spiral in the first revolution is a
sixth part of that added in the second revolution. Also, if on
the spiral described in one revolution two points be taken and

straight lines be drawn joining them to the fixed extremity of
the revolving line, and if t_vo circles be drawn with the fixed
point as centre and radii the lines drawn to the fixed extremity

of the straight line, and the shorter of the two lines be produced,
I say that (1) the area bounded by the circumference of the

greater circle in the direction of (the part of) the spiral included
between the straight lines, the spiral (itself) and the produced

straight line will boar to (2) the area bounded by the circum-
ference of the lesser circle, the same (part of the) spiral and the
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straight line joining their extremities the ratio which (3) the

radius of the lesser circle together with two thirds of the excess
of the radius of the greater circle over the radius of the lesser

bears to (4) the radius of the lesser circle together with one
third of the said excess.

The proofs then of these theorems and others relating to the
spiral are given in the present b(_)k. Prefixed to them, after the

manner usual in other geometrical works, are the propositions
necessary to the proofs of them. And here too, as in the books

previously published, I assume the following lemma, that, if
there be (two) unequal lines or (two) unequal areas, the excess

by which the greater exceeds the less can, by being [continually]
added to itself, be made to exceed any given magnitude among
those which are comparable with [it and with] one another."

Proposition 1.

Ira point move at a uniform rate along any line, and two
lengths be taken on it, they u.iU be proportional to the tinm_ of
describing them.

Two unequal lengths arc taken on a straight line, and two

lengths on another straight line representing the times; and
they are proved to be proportional by taking equimultiples of
each length and the corresponding time after the manner of
Eucl. V. De£ 5.

Proposition 9.

If each of two points on different lines respectively move along

them each at a uniform rate, and if lengths be taken, one on each
line, forming pairs, such that each pair are described in equal
times, the lengths will be proportionals.

This is proved at once by equating the ratio of the lengths
taken on one line to that of the times of description, which

must also be equal to the ratio of the lengths taken on the other
line.
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Proposition 3.

Given any number of circles, it is possible to find a stra_ht
line qreater than the sum of all their circ_mferenves.

For we have only to describe polygons about each and then

take a straight line equal to the sum of the perimeters of the
polygom_.

Proposition 4.

_ven two un_ual lines, viz. a straight 15_ a_d the circum-

fereTwe o/" a circle, it is possible to find a straight line less thal_

the greater of the two Ibzes a_d greater than the less.

For, by the Lemma, the exce_s can, by being added a sui_icmnt
number of times to itself, be made to exceed the lesser line.

Thus e.g, if c > l (where c is the circumference of the circle
and l the length of the straight line), we can find a number n
such that

n (c - l) > 1.
l

Therefore c - 1 > -,

and c>l+ l>l.

Hence we have only to divide l into n equal parts and add

one of them to l. The resultiug line will satisfy the condition.

Proposition 5.

Given a circle with centre O, and the tangent to it at a point

A, it is possible to draw from 0 a straight line OPF, meeting the

circle in P and the tangent in F, such that, if c be the circum-
ferenee of any given circle whatever,

FP : OP < (arc AP) : c.

Take a straight line, as D, greater than the circumference c.
[Prop. 3]
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Through 0 draw OH parullel to the given tangent, and
draw through A a line APtt, meeting the circle in P and OH

A

P F_H

O

in H, such that the portion Ptt intercepted between the circle

and the line OH may be equal to 2) *. Join OP and produce
it to meet the tangent in F.

Then FP : OP = AP : Ptt, by parallels,
=AP:D

< (arc A P) : c.

Proposition O.

Given a circle with centre O, a chord AB less than the

diameter, and OM the pe_Tendicular on AB from O, it is possible

to draw a straight line OFP, meetit_g the chord AB in F and the
circle in P, such, that

FP:PB=D:E,

where D : E is any given ratio less tfian BM : MO.

Draw OH parallel to AB, and BT perpendicular to BO
meeting OH in 2'.

Then the triangles BMO, OBT arc similar, and therefore

BM : M O = OB : BT,

whence D : E < OB : BT.

" This construction, which is assumed without any explanation as to how it
is to be effected, is described in the original Greek thus: ,'let PH be placed

(_l_8_) equal to D, verging (ve_ou_,,) towards A." This is the usual phraseology
used in the type of problem known by the name of _,_.
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Suppose that a line PH (greater than BT) is taken such
that

D : E= OB : PH,

H

D-

E

and let PH be so placed that it passes through B and P lies on
the circumferenceofthe circle,whileH ison the lineOH*.

(PH willfalloutsideBT, becausePH > BT.) JoinOP meeting
AB in F.

We now have
FP : PB = OP : PH

= OB : PH

=D:E.

Proposition 7.

Given a circle u_ith centre O, a chord AB less than the

diameter, and OM the perpendicular on it from O, it is possible
to draw from 0 a straight line OPF, meeting the circle in P and

AB produced in F, such that

FP: PB=D:E,

where D : E is any given ratio greater than BM : MO.

Draw OT parallel to AB, and BT perpendicular to BO
meeting OT in T.

" The Greek phrase is "let PH be placed between the circumference and the
straight line (OH) through B." The construction is assamed, like the similar
one in the last proposition.
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In this case, D : E > BM : MO

> OB : BT, by similar triangles.

o

E

Take a line I)1-1 (less than BT) such that

D : E = OB : PII,

and place PH so that P, H are on the eirele and on OT respec-
tively, while ItP produced passes through B*.

Then FP : .PB = OP : PtI

=D:E.

Proposition 8.

Given a circle with centre O, a chord A]3 less than, the

diameter, the tangent at B, and the perpendicular 03I from 0

on AB, it is possible to draw from 0 a straight line OFP,
meettng the chord AJB in F, the circle in P and the tangent in G,
such that

FP : BG= D : E,

where D : E is any given ratio less than BM : MO.

If OT be drawn parallel to 21B mcetmg the tangent at B in T,

BM : MO = OB : BT,

so that D : E < OB : BT.

Take a point C on TB produced such that

D: E=OB :BC,
whence BC > BT

• PH is described in the Greek as v_ovaa_ i_rZ(verging to) the point B. As
before the construction is assumed.
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Through the points O, T, C describe a circle, and let OB be
produced to meet this circle in K.

Q

C K

D

E

Then, since BC > BT, and OB is perpendicular to CT, it is
possible to draw from 0 a straight line OGQ, meeting CT in G
and the circle about OTC in Q, such that GQ = BK*.

Let OGQ meet AB in F and the original circle in P.

Now CG. GT = OG. GQ ;

and OF : OG = BT : GT,

so that OF. GT = OG. BT

It follows that

CG. GT : OF. GT = OG. GQ : OG.BT,

or CG : OF = GQ : BT

= BK: BT, by construction,
=BC: OB

= BC : OP.

Hence OP : OF = BC : CG,

and therefore .PF : O.P = BG : BC,

or PF : BG = OP : BC

-- OB : BC

= D:E.

• The Greek words used are : "it is possible to place another [straight hne]

GQ equal to KB verging (_e_ovca_) towards O." This particular _E_a_ is
discussed by Pappus (p. 298, ed. Hultsch). See the Introduction, chapter v.
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Propogdtion 9.

Given a circle with centre O, a _hord AB less than the

diameter, the tangent at B, and the perpendicular OM from 0

on AB, it is possible to draw from 0 a straight line OPGF,
meeting the circle in P, the tangent in G, and AB produced in F,
such that

FP:BG=D :E,

where D : E is any given ratio greater than BM : MO.

Let OT be drawn parallel to AB meeting the tangent at B
in T.

Then D : E > BM : MO

> OB :BT, by similar triangles.

Produce TB to C so that

D:E=OB :BC,

whence BC < BT.

K

c Q

A T

E

Describe a circle through the points O, 2",C, and produce OB
to meet this circle in K.

Then, since TB > BG, and OB is perpendicular to CT, it is
possible to draw from 0 a line OGQ, meeting CT in (7, and the

H.X. II
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circle about OTC in Q, such that OQ = BK e. Let OQ meet

the original circle in P and AB produced in F.

We now prove, exactly as in the last proposition, that

CG : OF = BK : BT

= BC : OP.
Thus, as before,

OP : OF = BC : CG,

and OP :PF = BC : BG,

whence PF :BG = OP : BC

= OB : BG

= D:L:

Proposition 10.

If A1, A,, As .... An be n lines forming an ascending arith-

metical progression in which the common difference is equal
to A_, the least term, then

(n+ 1)A,/+AI(A,+A,+ ... +A,) -- 3 (A/+ A/+ ... + A_').

[Archimedes' proof of this proposition is given above, p. 107-
9, and it is there pointed out that the result is equivalent to

1' + 2' + 8' +... + n' - _ (n + 1) (2n + 1)- 6 "]

Coa. 1. It foUows from this proposition that

n. Ad < 3(A/ + A; + ... + A,'),
and also that

n. A_' > 3 (A/+ A; + ... + An--/).

[For the proof of the latter inequality see p. 109 above.]

Cog. 2. All the results will equally hold if similar figures
are substituted for squares.

t

• See the note on the last proposition. /

/
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Proposition 1 1.

If Al, A2, ...An be n lines forming an ascending arith-

metical progression [in which the common difference is equal to
the least term A]]*, then

(n-l)An' : (An' + An-/+-.. +A_)

< An' : {Am.A, + _ (A.- A,)'} ;
b_d

(n - 1)A,' : (A,,_./+ A,,___"+... + A/)
>A,/: {An. Ai +_(A,_-A_)" I.

[Archimedes sets out the terms side by side in the manner
shown in the figure, where BC = An, DE = A,__,...RS = A_, and

produces DE, FG .... RS until they are
respectively equal to BC or An, so that ¢ H T u
Eli, GI, ...SU in the figure are re- |

spectively equal to A_, As...An-, He EtG
further measures lengths BK, DL, I
FM .... P V along BC, DE, FG .... PQ re-
spectively each equal to RS.

The figure makes the relations i Q
between the terms easier to see with K L_' • v- s
the eye, but the use of so large a |
number of letters makes the proof a D F e
somewhat difficult to follow, and it

may be more clearly represented as follows.]

It is evident that (Am - A]) = An__.

The following proportion is therefore obviously true, vi_

(n-1)A,/: (n-1)(A,,.A_ +_ A,__/)
---An': {An.A]+½(A,-Ad'}.

• The proposition is true even when the common difference is not equal to
A l, and is assumed in the more general form in Props. 25 and 26. But, as
Archimedes' proof assumes the equality of A1 and the common difference, the

words are here inserted to prevent misapprehension.

11--2
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In order therefore to prove the desired result, we have only
to show that

(n- 1)A.. A_+ _(n- 1) A__: < (A.* * A.__'+... + AJ)
but > (A___*+ A,_,' +... + A_').

I. To prove the first inequality, we have

(n - 1) A,. A1 + _(n - 1) A,___"

= (n -1) A_' + (n - 1)A_. A._, + _ (n - 1) A._IL..(1).
And

An 'J+ A.-I' + ... + A_l

= (A,__ + A_)'+ (A,__ + A_)"+ ... + (A1 + A_)_

= (A,-, _+ A,-_ _+... + AD

+ (n- 1) A:

+ 2A1 (A,-1 + An-_ +... + A1)

= (A__,'+ A___'+ ... + a_')
+(n- 1)A,*

+ AI {A,__ + A___ + A,-s +... + A_
+ A1 + A2 + ... + A._. + A,-1}

= (A,_,* + A,-_ _+... + Al 2)

+ (n - 1) A_'

+ hA,. A,,__....................................... (2).

Comparing the right-hand sides of (1) and (2), we see that
(n- 1)A_* is common to both sides, and

(n - 1) A_ . A,_.-1< n Ax . A,_,,
while, by Prop. 10, Cor. 1,

_ (n- 1) A,___'< A,_._I'+A,_'+ ... +Az _.
It follows therefore that

(n- 1)A_,.A_ + -_(n - l) A__,' < (An_+ A,,__' + ... + A22);

and hence the first part of the proposition is proved.

II. We have now, in order to prove the second result, to
show that

(n - 1) A,. A, + _ (n - 1) A_* > (A,H' + a,.__' +... +A_').
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The right-hand side is equal to

(A,,__+4#+(A,_,+ A,)'+... +(AI+ A# + A;
= A,,_," + A,,-3* +... + A12

+(n-1)a,'

+ 2A, (A_ + A,_-3 +... + A_)

= (a._2 + 4._: + ... +4:)

+ (n - 1)A,'

+A,{ A,__+a,_,+... + A_ }+A1 +A2 +...+A_,__

= (A,_g + A,__' +... + A,')

+ (n- 1) A?

+ (n- 2)A_.A.__........................ (3).

Comparing this expression with the right-hand side of (1) above,
we see that (n- 1) Al z is common to both sides, and

(n - 1) A1.4,-1 > (n- 2) A1. A,__,

while, by Prop. 10, Cor. 1,

½(n- 1) A,_,' > (A,_-_' + A,_-3' + ... + An').
Hence

(_- 1)A,. A_+ t (n- 1)A__?> (A__,'+ A,_2 +... + a:);
and the second required result follows.

CoR. The rdsults in the above proposition are equally true if
similar figures be substituted for squares on the several lines.

DEFINITIONS.

1. If a straight line drawn in a plane revolve at a uniform
rate about one extremity which remains fixed and return to
the position from which it started, and if, at the name time as

the line revolves, a point move at a uniform rate along the
straight line beginning from the extremity which remains fixed,

the point will describe a _piral (_X,_) in the plane.

2. Let the extremity of the straight line which remains
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fixed while the straight line revolves be called the origin"

(dpXd) of the spiral.

3. And let the position of the line from which the straight

line began to revolve be called the initial line _ in the
revolution (_pX/_ _Sv 7rep_¢op_¢).

4. Let the length which the point that moves along the
straight line describes in one revolution be called the first
distance, that which the same point describes in the second

revolution the second distance, and similarly let the distances
described in further revolutions be called after the number of

the particular revolution.

5. Let the area bounded by the spiral described in the
first revolution and the first distance be called the first area,

that bounded by the spiral described in the second revolution
and the second distance the second area, and similarly for the
rest in order.

6. If from the origin of the spiral any straight line be
drawn, let that side of it which is in the same direction as that

of the revolution be called forward (_rpoaTo_eva), and that
which is in the other direction backward (_Tr_/_eva).

7. Let the circle drawn with the origin as centre and the

first distance as radius be called the first circle, that drawn
with the same centre and twice the radius the second circle,

and similarly for the succeeding circles.

Proposition 1_.

I/any number of straight lines drawn from the origin to
meet the _iral _mke equal angles with one another, the lines will

be in arithm_ical progression.

[The proof is obvious.]

* The liSeral transition would of oourse be the "beginning of the spiral"

and "the beg_nnlng of the revolution" respeotively. But the modern names
will be more suitable for use la_er on, and are therefore employed here.
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Proposition 13.

Ira, straight line touch the spiral, it will touch it in one point
only.

Let 0 be the origin of the spiral, and BC a tangent to it.

If possible, let BC touch the spiral in two points P, Q.
Join OP, OQ, and bisect the angle POQ by the straight line OR
meeting the spiral in R.

Then [Prop. 12] OR is an arithmetic mean between OP and
OQ, or

OP + OQ = 2OR.

But in any triangle POQ, if the bisector of the angle POQ
meets PQ in K,

OP + OQ > 2OK'.

Therefore OK < OR, and it follows that some point on BC
between P and Q lies within the spiral. Hence BG cuts the

spiral; which is contrary to the hypothesis.

Propo_tlon 14.

If 0 be the origin, and P, Q two points on the first turn of

the spiral, and if OP, OQ produced "meet the 'first circle'
AKP'Q' in P', Q' respectively, OA being the initial line, then

OP : OQ = (arc AKP') : (arc AKQ').

For, while the revolving line OA moves about 0, the point

A on it moves uniformly along the circumference of the circle

* This is aseume4 as a known proposition ; but it is easily proved.
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AKP'Q', and at the same time the point describing the spiral
moves uniformly along OA.

4

Thus, while A describes the arc AKP', the moving point on

OA describes the length OP, and, while A describes the arc

AKQ', the moving point on OA describes the distance 0Q.

Hence 0P : 0Q = (arc AKP') : (arc AKQ'). [Prop. 2]

PropoJition 18.

If P, Q be po_ats on the second turn of the spiral, and OP,

OQ meet the 'first circle' A KP'Q' in P', Q', as in the last
proposition, and if c be the circumference of the first circle, then

OP : OQ = c + (arc AKP') : c + (arc AKQ').

For, while the moving point on OA describes the distance
0P, the point A describes the whole of the circumference of

the 'first circle' together with the arc AKP'; and, while the

moving point on OA describes the distance 0Q, the point A
describes the whole circumference of the 'first circle' together
with the arc AKQ'.

Con. Similarly, if P, Q are on the nth turn of the spiral,

OP : OQ = (n - 1) v + (arc AKP') : (n - 1) c + (arc AKQ').



ON SPIRALS. 169

Propositions 16, 17.

If JBC be the tangent at P, any point on the spiral, PC being

the 'foruJard' part of BI2, and if OP bejoined, the angle OPC
is obtuse whzle the angle OPB is acute.

I. Suppose P to be on the first turn of the spiral.

Let OA be the initial line, AKP' the 'first circle.' Draw

the circle DZP with centre 0 and radius OP, meeting OA in
D. This circle must then, in the' forward' direction from P,

CR,
_t

A

B

fall within the spiral, and in the 'backward' direction outside

it, since the radii vectores of the spiral are on the' forward' side

greater, and on the ' backward' side less, than OP. Hence the
angle OPC cannot be acute, since it cannot be less than the

angle between OP and the tangent to the circle at P, which is
a right angle.

It only remains therefore to prove that OPff is not a right
angle.

If possible, let it be a right angle. B6 _ will then touch
the circle at P.

Therefore [Prop. 5] it is possible to draw a line OQff

meeting the circle through P in Q and BC in 5_, such that

CQ : OQ < (are .PQ) : (arc DLP) ............ (1).



170 ARCHIMEDES

Suppose that 0C meets the spiral in R and the ' first circle'
in R'; and produce OP to meet the ' first circle' in P'.

From (1) it follows, componendo, that

CO : OQ < (arc DLQ) : (arc DLP)

< (arc AKR') : (arc AKP')

< OR : OP. [Prop. 14]

But this is impossible, because OQ = OP, and OR < OC.

Hence the angle OPC is not a right angle. It was also
proved not to be acute.

Therefore the angle OPC is obtuse, and the angle OPB
consequently acute.

II. If P is on the second, or the nth turn, the proof is the
same, except that in the proportion (1) above we have to

substitute for the are .DLP an arc equal to (p + are DLP) or
(n-1 .p + arc DLP), where p is the perimeter of the circle

C

R

DLP through P. Similarly, in the later steps, p or (n-1)p
will be added to each of the arcs DLQ and DLP, and c or
(n-1)c to each of the arcs AKR', AKP', where c is the
circumference of the ' first circle' AKP'.
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Propositions 18, 19.

I. If OA be the initial line, A the end of the first turn of

the spiral, and if the tangent to the spiral at A be drawn, the
straight line OB drawn from 0 perpendicular to OA will meet

the said tangent in some point B, and OB will be equal to the
circumference of the 'first circle:

II. If A' be the end of the second turn, the perpendicular

OB will n_eet the tangent at A' in some point B', and OB' will
be equal to 2 (circz,mference of' second circle ').

III. Generally, if A, be the end of the nth turn, and OB
meet the tangent at An in Bn, then

OBn = nc,,,

where c,, is the circumference of the ' nth circle.'

I. Let AKC be the ' first circle.' Then, since the 'back-

ward' angle between OA and the tangent at A is acute [Prop.
16], the tangent will meet the ' first circle' in a second point C.
And the angles CA 0, BOA are together less than two right

angles ; therefore OB will meet A G produced in some point B.

...... I I
E D

Then, if c be the eircumferenee of the fimt circle, we have

to prove that
OB = c.

If not, OB must be either greater or less than c.
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(1) Ifpossible,suppose0B > c.

Measure along0B a length0D lessthan OB but greater
than c.

We have then a circleAKC, a chord AC in itlessthan

the diameter,and a ratioA0:0D which isgreaterthan the

ratioA 0 :0B or(whatis,by similartriangles,equaltoit)the

ratioof _AC to the perpendicularfrom 0 on A C. Therefore

[Prop. 7] we can draw a straight line OPF, meeting the circle

in P and CA produced in F, such that
FP : PA = AO : OD.

Thus, alternately, since A 0 = PO,

FP : PO= PA : OD

< (arc PA) : c,

since (arc PA ) > PA, and OD > v.

Componendo,

EO : PO< (c +arcPA) : c

< OQ: OA,

where OF meets the spiral in Q. [Prop. 15]

Therefore, since OA = OP, FO < OQ ; which is impossible.

Hence OB :_ c.

(2) If Possible, suppose OB < c.

Measure OE along OB so that OE is greater than OB but
less than c.

In this case, since the ratio AO : OE ks less than the ratio

AO : OB (or the ratio of ½AC to the perpendicular from 0

on AC), we can [Prop. 8] draw a line OF'.P'G, meeting AC in

F', thc circle in -P', and the tangent at A to the circle in G,
such that

F'I _ : A G = AO : OE.

Let OP'G cut the spiral in Q'.

Then we havc, alternatcly,
F'P" : FO = A G : OE

> (arcAP') : c,
because A G > (arc AP'), and OE < c.
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Therefore
F'O : P'O < (arc AK£ u) : c

< OQ' : OA. [Prop. 14]

But this is impossible, since OA = OP', and OQ'< OF'.

Hence OB _. c.

Since therefore OB is neither greater nor less than c,

OB = c.

II. Let A'K'C' be the 'second circle,' A'C' being the
tangent to the spiral at A' (which will cut the second circle,

since the ' backward' angle OA'C' is acute). Thus, as before,
the perpendicular OB' to OA' will meet A'C' produced in some
point B'.

If then c' is the circumference of the 'second cfl'cle,' we

have to prove that OB'= 2c'.
F

=t )E" _f

For, if not, OB' must be either greater or less than 2c'.

(1) If possible, suppose OB' > 2d.

Measure OD' along OB" so that 0D' is less than OB' but
greater than 2c'.

Then, as in the case of the ' first circle' above, we can draw

a straight line OPF meeting the ' second circle' in P and C'A'
produced in F, such that

FP : PA'= A'O : OD'.
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Let OF meet the spiral in Q.

We now have, since A'O -- PO,

FP : PO = PA' : OD'

< (arc A'P) : 2c',

because (arc A'P) > A'P and 0D' > 2c'.

Therefore FO : PO < (2c' + arc A'P) : 2c'

< OQ: OA'. [Prop. 15, Cor.]

Hence FO < OQ; which is impossible.

Thus OB' _ 2c'.

Similarly, as in the case of the' first circle ', we can prove that

OB' ¢ 2c'.

Therefore OB'= 2d.

III. Proceeding, in like manner, to the 'third' and suc-

ceeding circles, we shall prove that

OB,, = ncn.

Proposition 20.

I. If P be any point on the first t_rn of the spiral and OT

be drawn perpendicular to OP, OT will meet the tangent at P to
the spiral in some point T; and, if the circle drawn with centre

0 and radius OP meet the initial line in K, then OT is equal to
the arc of this circle between K and P measured in the 'forward'

direction of the spiral.

II. Generally, if .P be a point on the nth turn, and the
notation be as before, while p represents the circumference of the
circle with radius OP,

OT = (n - 1)p + arc KP (measured 'forward ').

I. Let P be a point on the first turn of the spiral, OA the
initial fine, PR the tangent at iu taken in the 'backward'
directiom

Then [Prop. 16] the angle OPR is acute. Therefore PR
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meets the circle through P in some point R; and also OT will

meet P// produced in some point T.

If now OT is not equal to the are KRP, it must be either
greater or less.

F

A

(1) If possible, let OT be greater than the a_'cKRP.

Measure 0U along OT less than OT but greater than the
arc KRP.

Then, since the ratio PO : 0 U is greater than the ratio
PO:OT, or (what is, by similar triangles, equal to it) the
ratio of _/)R to the perpendicular from 0 on PR, we can draw

a line OQF, meeting the circle in Q and RP produced in F,
such that

FQ : PQ--- PO : OU. [prop. 7]

Let OF meet the spiral in O'.
We have then

FQ : QO= PQ : OU

< (arc PQ) : (arc KRP), by hypothesis.

Componendo,

FO : QO < (are KRQ) : (arc KRP)

< OQ': OP. [Prop. 14]

But QO = OP.
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Therefore FO < OO'; which is impossible.

Hence OT _ (arc KRP).

(2) The proof that OT _. (are KRP) follows the method of
Prop. 18, I. (2), exactly as the above follows that of Prop. 18,
I. 0).

Since then OT is neither greater nor less than the arc KRP,
it is equal to it.

II. If P be on the second turn, the same method shows
that

OT = p + (arc KRP) ;

and, similarly, we have, for a point P on the nth turn,

OT = (n - 1) p + (arc KRP).

Propositions _1, _2, _8.

Given an area bounded by any arc of a spiral and the lines

joining the extremities of the arc to the origin, it is possible to
circumscribe about the area one figure, and to inscribe in it

another figure, each con_sting of similar sectors of circles, and
such that the circumscribed figure exceeds the inscribed by less
than any assig_ed area.

For let BC be any arc of the spiral, 0 the origin. Draw
the circle with centre 0 and radius OC, where C is the 'forward'
end of the arc.

Then, by bisecting the angle BOC, bisecting the resulting

angles, and so on continually, we shall ultimately arrive at
an angle COr cutting off a sector of the circle less than any
assigned area. Let COr be this sector.

Let the other lines dividing the angle BOG into equal parts

meet the spiral in P, Q, and let Or meet it in R. With 0 as
centre and radii OB, OP, OQ, OR respectively describe arcs of

circles Bp', bBq', pQr', qRc', each meeting the adjacent radii as
shown in the figure. In each case the arc in the ' forward'

direction from each point will fall within, and the arc in the
'backward' direction outside, the spiral.
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We have now a circumscribed figure and an inscribed figure
each consisting of similar sectors of circles. To compare their

areas, we take the successive sectors of each, beginning from OC,
and compare them.

The sector 06'r in the circumscribed figure stands alone.

And (sector ORq)= (sector ORe'),

(sector OQp)= (sector OQr'),

(sector OPb)= (sector OPq'),

while the sector OBp' in the inscribed figure stands alone.

Hence, if the equal sectors be taken away, the difference be-
tween the circumscribed and inscribed figures is equal to the

difference between the sectors OCt and OBp'; and this difference
is less than the sector OCt, which is itself less than any
assigned area.

The proof is exactly the same whatever be the number of
angles into which the angle BOC is 5
divided, the only difference being o.p,,_p ]

that, when_the arc begins from the _1_

origin, the smallest sectors OPb, OPq'

in each figure are equal, and there is
therefore no inscribed sector standing

by itself, so that the difference c

between the circumscribed and in- _
scribed figures is equal to the sector c
OCr itself.

u.A. 12



178 ARCHIMEDES

Thus the proposition is universally true.

COR. Since the area bounded by the spiral is intermediate
in magnitude between the circumscribed and inscribed figures,
it follows that

(1) a figure can be circumscribed to the area such that it

exceeds the area by less than any assigned space,

(2) a figure can be inscribed such that the area exceeds it by
less than any assigned space.

Proposition 24.

The area bounded by the first turn of the spiral and the

initial line is equal to one-third of the 'first circle'[= ½7r(27ra) _,
where the spiral is r = aS].

[The same proof shows equally that, if OP be any radius
vector in the first turn of the spiral, the area of the portion of

the spiral bounded thereby is equal to oue-third of that sector of
the circle drawn with radius OP which is bounded by the initial
line and OP, measured in the 'forward' direction from the
initial line.]

Let 0 be the origin, OA the initial line, A the extremity of
the first turn.

Draw the ' first circle,' i.e. the circle with 0 as centre and
OA as radius,

Then, if C1 be the area of the first circle, R1 that of the first

turn of the spiral bounded by OA, we have to prove that
1/_ = _C_.

For, if not, R_ must be either greater or less than C_.

I. If possible, suppose R_ < _C_.

We can then circumscribe a figure about Ra made up of
similar sectors of circles such that, if F be the area of this

figure,
F-R_<_C,-Ra,

whence F < _ C_.
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Let OP, OQ.... be the radii of the circular sectors, beginning
f_om the smallest. The radius of the largest is of course OA.

The radii then form an ascending arithmetical progression
in which the common difference is equal to the least term OP.

If n be the number of the sectors, we have [by Prop. 10, Cor. 1]

n. OA' < 3 (OP" + OQ '_+ ... + OA') ;

A

and, since the similar sectors are proportional to the squares on
their radii, it follows that

c,< 3F,
or F > _C,.

But this is impossible, since F was less than _C,.

Therefbre R, Jg _C,.

II. If possible, suppose R_ > _C_.

We can then inscribe a figure made up of similar sectors of

circles such that, iff be its area,

whence f> _rC1.

If there are (n- 1) sectors, their radii, as OP, OQ,..., form

an ascending arithmetical progression in which the least term
is equal to the common difference, and the greatest term, as
017, is equal to (n- 1)OP.

12--2
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Thus [Prop. 10, Cor. 1]

n. OA' > 3 (OP' + OQ_+... + OY'),

whence CI > 3f,

or f < ;
which is impossible, since f> _U_.

Therefore /_ _ ½C_.

Since then R_ is neither greater nor less than _C1,

[Archimedes does not actually find the area of the spiral
cut off by the radius vector OP, where P is any point on thc
first turn ; but, in order to do this, we have only to substitute

p

K A

L

in the above proof the area of the sector KJLP of the circle
drawn with 0 as centre and OP as radius for the area C1 of

the' first circle ', while the two figures made up of similar sectors
have to be circumscribed about and inscribed in the portion

OEP of the .spiral. The same method of proof then applies

exactly, and the area of OEP is seen to be ½ (sector KLP).

We can prove also, by the same method, that, if P be a

point on the second, or any later turn, as the nth, the complete
area described by the radius vector from the beginning up to
the time when it reaches the position OP is, if C denote the

area of the complete circle with 0 as centre and OP as radius,
½ (5_+ sector KZP) or _ (n - 1. C + sector KZP) respectively.

The area so described by the radius vector is of course not
the same thing as the area bounded by the last complete turn
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of the spiral ending at P and the intercepted portion of the
radius vector OP. Thus, suppose R_ to be the area bounded

by the first turn of the spiral and OA_ (the first turn ending at

A_ on the initial line), R= the area added to this by the second
complete turn ending at A2 on the initial line, and so on. P_ has

then been described tw/ce by the radius vector when it arrives
at the position OA2; when the radius vector arrives at the

position OAs, it has described R_ three times, the ring R, twice,
and the ring R_ once ; and so on.

Thus, generally, if C, denote the area of the ' nth circle,' we
shall have

_G, = R, + 2R__1 + 3R,_2 +... + nR_,

while the actual area bounded by the outside, or the complete
nth, turn and the intercepted portion of OAn will be equal to

R. + R.__ + R_2 +... + R1.

It can now be seen that the results of the later Props. 25
and 26 may be obtaincd from the extension of Prop. 24 just
given.

To obtain the general result of Prop. 26, suppose BC to be
an arc on any turn whatever of the spiral, being itself less than

a complete turn, and suppose B to be beyond An the extremity
of the nth complete turn, while G is ' forward' from B.

Let -Pbe the fraction of a turn between the end of the nth
q

turn and the point B.

Then the area described by the radius vector up to the

position OB (starting from the beginning of the spiral) is
equal to

_ (n + P) (circle with rad. OB).

Also the area described by the radius vedor from the beginning
up to the position OG is
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The area bounded by OB, OG and the portion BEG of the

spiral is equal to the difference between these two expressions ;
and, since the circles are to one another as OB s to OC', the

difference may be expressed as

]{(n+P)(1-OB'_(cirelewith rad OC)+(sectorB'MC)}OCU

But, by Prop. 15, Cor.,

(n +P) (cirele B'MC) : {(n +P)(cirele B'MC) + (sector B'MC)}

= OB : OC,
M

so that

(n + P) (cirele B'MC) : (sector B'MC)= OB : (OC- OB).

Thus area BEC {(_--_B_B) ( }sectorB']/-C =_ 0 1 OB'_- OC_]+I

OB (OC + OB) + OC_
=_.__ oc_

o_. OB+_(OC- OB)'
OC_

The result of Prop. 25 is a particular case of this, and the
result of Prop. 27 follows immediately, as sho_-a under that
proposition.]
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Propositions aS, 26, _7.

[Prop. 25.] If A_ be the end of the second turn of the spiral,
the area bounded by the second turn and OA2 is to the area

of the 'second circle' in the ratio of 7 to 12, being the ratio of
{r2rl + ,_(r2 - rl)g} to r_9, where %, r_ are the radii of the 'first'
and 'second' circles respectively.

[Prop. 26.] If BC be any arc measured in the 'forward'
direction on any turn of a spiral, not being greater than the
complete turn, and if a circle be drawn with 0 as centre and OC

as radius meeting OB in B', then

(area of spiral between OB, 00) : (sector OB'C)

= {OC. OB + _ (Off- OB)'} : OC'.

[Prop. 27.] If R, be the area of the first turn of the spiral

bounded by the initial line, t_ the area of the ring added by the
second complete turn, R3 that of the ring added by the third turn,
and so on, then

R_ = 2R_, R, = 3R_, R_ = 4R_ ..... R, = (n - 1) R_

Also R_ = 6R, .

[Archimedes' proof of Prop. 25 is, mutatis mutandis, the

same as his proof of the more general Prop. 26. The latter
will accordingly be given here, and applied to Prop. 25 as a

particular case.]
Let BC be an arc measured in the 'forward' direction on

any turn of the spiral, CKB' the circle drawn with 0 as centre
and OC as radius.

Take a circle such that the square of its radius is equal

to OC. OB + _ (OC- OB)_, and let a be a sector in it whose
central angle is equal to the angle BOC.

Thus _r : (sector OB'6') = {Off. OB + _ (Off - OB)'} : 06 _,

and we have therefore to prove that

(area of spiral OB6') = o'.

For, if not, the area of the spiral OBC (which we will call S)

must be either greater or less than _.
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I. Suppose, ff possible, S < _.

Circumscribe to the area S a figure made up of similar

sectors of circles, such that, ff F be the area of the figure,

F-;Y< a-S,
whence F < ,.

Let the radii of the successive sectors, starting from OB,
be OP, OQ, ... OC. Produee OP, OQ.... to meet the circle
CKB', . ..

If then the lines OB, OP, OQ.... OC be _ in number, the

number of sectors in the circumscribed figure will be (n - 1),

and the sector OB'C will also be divided into (n- 1) equal

sectors. Also OB, OP, OQ .... OG will form an ascending
arithmetical progression of n terms.

Therefore [see Prop. 11 and Cor.]

(n- 1)05TM : (OP"+ OQ_+... + OC")
< oc,: {oc. OB+ _(OV- OB)'}
< (sector OB'C) : *5 by hypothesis.

Hence, since similar sectors are as the squares of their radii,

(sector OB'O) : F< (sector OB'O) : _,

so that F > _.

But this is impossible, because F < _r.

Therefore S _ or.
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II. Suppose, if possible, S > a.

Inscribe in the area S a figure made up of similar sectors of
circles such that, iff be its area,

S-f< S-_,
whence f > _.

Suppose OB, OP, ... O Y to be the radii of the successive

sectors making up the figure f, being (n- 1) in number.

We shall have in this case [see Prop. 11 and Cor.]

(n - 1) 06" : (OB' + OP" +... + OY _)

> OC" : {Off. OB + _}(Oh- OB)'},

whence (sector OB'C) :f> (sector OB'C) : o5

so that f < ,.

But this is impossible, because f> _.

Therefore S :_ o'.

Since then S is neither greater nor less than ,, it follows that

S_O'.

In the particular case where B coincides with A_, the end
of the first turn of the spiral, and C with A_, the end of the

second turn, the sector OB'C becomes the complete 'second
circle,' that, namely, with OA2 (or r_) as radius.

Thus

(area of spiral bounded by OA_) : (' second circle ')

= {r2rl+ ½(r, -- r,)'} : r,'

=(2+_):4 (sincer_=2r_)
=7:12.

Again, the area of the spiral bounded by OA2 is equal to
R_ +/_ (i.e. the area bounded by the first turn and OA_,

together with the ring added by the second turn). Also the
' second circle' is four times the 'first circle,' and therefore

equal to 12/_.

Hence (Ph +/_) : 12R_ = 7 : 12,

or Rn + R_ ----7/_.

Thus R_ = 6/_ ..................... (1).
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Next, for the third turn, we have

(R, + R_ + R3) : (' third circle ') = {rsr2+ ½(r3 - r_)_} : r_'

=(3.2+_):3'
= 19 : 27,

and (' third circle ') = 9 (' first circle ')

= 27R1 ;

therefore P_ +/_ + R3 = 19R_,

and, by (1) above, it follows that

I£3= 12R,

= 2R_ ............................ (2),
and so on.

Generally, we have

(R1 + R._,+ ... +R_) : (nth circle) = {r,r___ + '_(rn- m-l) _} : rn_,

(1_ + P_ +... + Rn-_) : (n---]-th circle)

= it,,_,r,-, + _(r,__- r,-_)_}: r,,_?,

and (uth circle) : (n - lth circle) = ra_ : rn-,'.

Therefore

(/_ + R, +... + R,) : (R, + B_+... + R,_,)

= {_(n - :) + _}: {(_- 1)(n - 2)+ _}

={3n(n-1)+l}: {3(n- l)(n- 2)+ I}.

D/r/mendo,

R, :(/_+ P_+... + R,,_,)
= 6(n- 1): {3(n- 1)(n- 2) + l} ......... (a).

Similarly

Rn-,: (Ra + R_ +... + P_._)--6(n-2): {3(n- 2) (n- 3) + 1},

from which we derive

R,_, : (/_ + R_+... + R,__)

= 6(n--2): {6(n- 2)+ 3(n-- 2)(n- 3)+ 1}

= 6 (n - 2) : {3 (n - 1) (_ - 2) + 1} ............ (f_).
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Combining (a) and (f_), we obtain

Rn : R,-1 = (n - 1) : (n - 2).
Thus

R2,/_, R, .... Rn are in the ratio of the successive numbers
1,2,8... 1).

Proposition _8.

If 0 be the origin and BC any arc measared in the 'forward'

direction on any turn of the spiral, let two circles be drawn
(1) with centre O, and radius OB, meeting OG in C', and
(2) with centre 0 and radius OG, meeting OB produced in B'.

Then, if E denote the area bounded by the larger circular arc
B'C, the line B'B, and the spiral BC, while F denotes the area

bounded by the smaller arc BC', the line CC' and the spiral BC,

E : F= {OB+ _(OG- OB)} : {OB+._(OC- OB)}.

Let a denote the area of the lesser sector OBC'; then the

larger sector OB'C is equal to a + F+ E.

s

Thus [Prop. "26]

(a+F) : (o- + F + E)= {OC. OB + _ (OC- OB)'} : 0C2...(1),
whence

E : (o. + F) = {Off(Off - OB) - ½(OC - OB)_}
: {oc.OB+ (Oe- OB)'}

= {OB(OC- OB) + _ (OC- OB)'}
: [OC. OB + _ (Og - OS)'] ............ (2).
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A_n
& + F+ E) : _ = 0,6" : OB'.

Therefore, by the first proportion above, _ _q_li,

(,,+ F) : _,= {06',. OB+_(O0- OB)'} : OB',
whence

(a + F) : F = {Off. OB + _ (OC - OB)'}

: {OB(OC- OB) + _ (Off - OB)'}.

Combining this with (2) above, we obtain

E : F= {OB(OC- OB) + {}(Off - OB)'}

: {OB(OO-OB)+ t(Oe- OB)'}
= {OB+ _(OC - OB)} : {OB + _(Oe- OB)}.



ON THE EQUILIBRIUM OF PLANES

OR

THE CENTRES OF GRAVITY OF PLANES.

BOOK I.

"I POSTULATEthe following:

1. Equal weights at equal distances are in equilibrium,
and equal weights at unequal distances are not in equilibrium

but incline towards the weight which is at the greater distance.

2. If, when weights at certain distances are in equilibrium,

something be added to one of the weights, they are not in
equilibrium but incline towards that weight to which the
addition was made.

3. Similarly, if anything be taken away from one of the
weights, they are not in equilibrium but incline towards the

- weight from which nothing was taken.

4. When equal and similar plane figures coincide if applied

to one another, their centres of gravity similarly coincide.

5. In figures which are unequal but similar the centres of
gravity will be similarly situated. By points similarly situated

in relation to similar figures I mean points such that, if straight

lines be drawn from, them to the equal angles, they make equal
angles with the corresponding sides.
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6. If magnitudes at certain distances be in equilibrium,
(other) magnitudes equal to them will also be in equilibrium at
the same distances.

7. In any figure whose perimeter is concave in (one and)
the same direction the centre of gravity must be within the

figure."

Proposition 1.

Weights which balance at equal distances are equal.

For, if they are unequal, take away from the greater the
difference between the two. The remainders will then not

balance [Post. 3]; which is absurd.

Therefore the weights cannot be unequal.

Proposition _.

tJ_equal weights at equal distances will not balance b_lt will

incline towards the greater weight.

For take away from the greater the difference between the
two. The equal remainders will therefore balance [Post. 1].
Hence, if we add the difference again, the weights will not

balance but incline towards the greater [Post. 2].

Proposition 3.

Unequal weights will balance at unequal distances, the greater

weight being at the lesser distance.

Let A, B be two unequal weights (of which A is the

greater) balancing about C at distances A C, BC respectively.

Then shall AC be less than BC. For, if not, take away

from A the weight (A -B.) The remainders will then incline
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towards B [Post. 3]. But this is impossible, for (1) ifAC= CB,

the equal remainders will balance, or (2) if AC > CB, they will
incline towards A at the greater distance [Post. 1].

Hence A C< CB.

Conversely, if the weights balance, and AC<CB, then
A>B.

Proposition 4.

If two equal weights have not the same centre of gravity, the
centre of gravity of both taken together is at the middle point of

the line joining their centres of gravity.

[Proved from Prop. 3 by reductio ad absurdum. Archimedes

assumes that the centre of gravity of both together is on the
straight lbm joining the centres of gravity of each, saying that

this had been proved before (_rpo_$¢taTat). The allusion is no
doubt to the lost treatise On levers (_'¢p'_ _'vT_). ]

Proposition 5.

If three equal magnitudes have their centres of gravity on a
straight line at equal distances, the centre of gravity of the

system will coincide with that of the middle magnitude.

[This follows immediately from Prop. 4.]

CoI_ 1. The same is true of any odd number of magnitudes

if those which are at equal distances from the middle one are
equal, while the distances between their centres of gravity are

equal.

CoR. 2. If there be an even number of magnitudes with

their centres of gravity situated at equal distances on one straight
line, and if the two middle ones be equal, while those which are

equidistant from them (on each side) are equal respectively, the
centre of gravity of the system is the middle point of the line

joining the centres of gravity of the two middle ones.
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Propositions 6, 7.

Two _nit_tes, whether commensurable [Prop. 6] or in-
commensurable [Prop. 7], balance at distances reciprocally
proportional to the magnitudes.

I. Suppose the magnitudes A, B to be commensurable,

and the points A, B to be their centres of gravity. Let DE be
a straight line so divided at C that

A :B=DC: CE.

We have then to prove that, if A be placed at E and B at
D, C is the centre of gravity of the two taken together.

L I_ C D"' _ i_1 J K

N

Since A, B are commensurable, so are DC, GE. Let _hr be

a common measure of DC, CE. Make DH, DK each equal to
CE, and EL (on CE produced) equal to CD. Then EH= CD,
since 1)H= CE. Therefore ZH is bisected at E, as HK
bisected at D.

Thus LH, /irk must each contain _V an even number of
times.

Take a magnitude 0 such that 0 is contained as many
times in A as _hr is contained in ZH, whence

A : O= ZH : _,V.

But B:A=CE :DC

= HK : LH.

Hence, e_ aequali, B : 0 = HK : 2V, or 0 is contained in B as

many times as .V is contained in HK.

Thus 0 is a common measure of A, B.
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Divide LIT, IlK into parts each equal to IV, and A, B into

parts each equal to 0. The parts of A will therefore be equal
in number to those of LH, and the parts of B equal in number
to those of ttK. Place one of the parts of A at the middle

point of each of the parts IV of LH, and one of the parts of B
at the middle point of each of the parts N of ttK.

Then the centre of gravity of the parts of A placed at equal

distances on Ltt will be at E, the middle point of LH [Prop. 5,
Cor. 2], and the centre of gravity of the parts of B placed at

equal distances along HK will be at D, the middle point of HK.

Thus we may suppose A itself applied at E, and B itself
applied at D.

But the system formed by the parts 0 of A and B together
is a system of equal magnitudes even in number and placket at

equal distances along LK. And, since LE = CD, and EC = DK,
LC= CK, so that C is the middle point of LK. Therefore C is

the centre of gravity of the system ranged along LK.

Therefore A acting at E and B acting at D balance about
the point C.

II. Suppose the magnitudes to be incommensurable, and

let them be (A +a) and B respectively. Let DE be a line
d_vided at C so that

(A + a) : B = DC : CE.

D C E

Then, if (A +a) placed at E and B placed at D do not
balance about C, (A + a) is either too great to balance B, or not

great enough.

Suppose, ff possible, that (A + a) is too great to balance B.
Take from (A + a) a magnitude a smaller than the deduction
which would make the remainder balance B, but such that the

remainder A and the magnitude B are commensurable.

H.A. 13
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Then, since A, B are commensurable, and

A :B<DC:CE,

A and B will not balance [Prop. 6], but D will be depressed.

But this is impossible, since the deduction a was an

insufficient deduction from (A + a) to produce equilibrium, so
that E was still depressed.

Therefore (A +a) is not too great to balance B; and

similarly it may be proved that B is not too great to balance
(A +a).

Hence (A+a), B taken together have their centre of

gravity at C.

ProposiUon 8.

If AB be a magnitude whose centre of gravity is C, and AD
a part of it whose centre of gravity is F, then the centre of

gravity of the remaining part will be a point G on FC produced
such that

GC : CF= (AD) : (DE).

A E
]

¢ G H t
J

D B

For, if the centre of gravity of the remainder (DE) be not
G, let it be a point H. Then an absurdity follows at once from

Props. 6, 7.

PropoeiUon 9.

The centre of gravity of any parallelogram lies on the

straigh_ line joining the middle points of opposite sides.

Let ABCD be a parallelogram, and let EFjoin the middle

points of the opposite sides AD, BC.

If the centre of gravity does not lie on EF, suppose it to be

H, and draw HK parallel to A D or BU meeting EF in K.
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Then it is possible, by bisecting El), then bisecting the
halves, and so on continually, to arrive at a length EL less

E L

/t11/I/
B F

than Ktt. Divide both AE and ED into parts each equal
to EL, and through the points of division draw parallels to AB
or CD.

We have then a number of equal and similar parallelograms,

and, if any one be applied to any other, their centres of gravity
coincide [Post. 4]. Thus we have an even number of equal

magnitudes whose centres of gravity lie at equal distances along

a straight line. Hence the centre of gravity of the whole
parallelogram will lie on the line joining the centres of gravity
of the two middle parallelograms [Prop. 5, Cor. 2J.

But this is impossible, for H is outside the middle
parallelograms.

Therefore the centre of gravity cannot but lie on EF.

Proposition 10.

The centre of gravity o/ a parallelogram is the poiut of

intersection o/ its diagonals.

For, by the last proposition, the centre of gravity lies on
each of the lines which bisect opposite sides. Therefore it

is at the point of their intersection; and this is also the

Point of intersection of the diagonals.

Alternative proof.

Let AJHCD be the given parallelogram, and BD a diagonal.

Then the triangles ABD, CDB are equal and similar, so that
[Post. 4], if one be applied to the other, their centres of gravity

will fall one upon the other.
13--2
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Suppose F to be the centre of gravity of the triangle ABD.
Let G be the middle point of BD. A D

Join FG and produce it to H, so / _
that FG = GH.

If we then apply the triangle
ABD to the triangle CDB so that
AD falls on CB and AB on CD, the a c

point F will fall oil H.

But [by Post. 4] F will fall on the centre of gravity of

CDB. Therefore H is the centre of gravity of CDB.

Hence, since F, H are the centres of gravity of the two

equal triangles, the centre of gravity of the whole parallelogram
is at the middle point of FH, i.e. at the middle point of BD,
which is the iatersection of the two diagonals.

Proposition 1 1.

If abc, ABC be two similar triangles, and g, G two poi_ _n
them similarly situated with respect to them respectively, the_, if
g be the centre of gravity of the triangle abc, G must be the ce_tre

of gravity of the triangle ABC.

Suppose ab : bc : ca = AB : BC : CA.

A

b c B C

The proposition is proved by an obvious reductio ad
absurdum. For, if G he not the centre of gravity of the

triangle ABC, suppose H to be its centre of gravity.

Post. 5 requires that g, H shall be similarly situated with

respect to the triangles respectively; and this leads at once
to the absurdity that the angles ttAB, GAB axe equal.
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]Proposition 12.

Given two similar triangles abc, ABC, and d, D the middle

points of be, BC respectively, t/ten, if the centre of gravity of abe
lie on ad, that of ABC will lie on AD.

Let g be the point on ad which is the centre of gravity
of abe.

A

b d c B D C

Take G on AD such that

(_d : ag = AD : AG,

and join gb, gc, GB, GC.

Then, since the triangles are similar, and bd, BD are the

halves of be, BC respectively,

ab : bd = AB : BD,

and the angles abd, ABD are equal.

Theretbre the triangles abd, ABD are simiJar, and

z bad = L BAD.

Also ba : ad = BA : A D,

while, from above, ad : ag = AD : A G.

Therefore ba : ag= BA : AG, while the angles bag, BAG
are equal.

Hence the triangles bag, BAG are similar, and

L abg = L ABG.

And, since the angles abd, ABD are equal, it follows that

L gbd = L GBD.

In exactly the same manner we prove that

z gac = Z GA C,

L acg = L A CG,

z gcd= z GCD.
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Therefore g, G are similarly situated with respect to the
triangles respectively; whence [Prop. 11] G is the centre of
gravity of ABC.

Proposition 13.

In any triangle the centre of gravity lies on the straight line
joining any angle to the middle posit of the opposite side.

Let ABC be a triangle and D the middle point of BC.
Join AD. Then shall the centre of gravity lie on AD.

For, if possible, let this not be the case, and let H be the
centre of gravity. Draw HI parallel to CB meeting AD in/.

Then, if we bisect DC, then bisect the halves, and so on,

we shall at length arrive at a length, as DE, less than It[.

A

M N

X
/

B F D E C

Divide both BD and DC into lengths each equal to DE, and
through the points of division draw lines each parallel to DA
meeting BA and A C in points as K, L, M and N, P, Q

respectively.

Join MN, LP, KQ, which lines will then be each parallel
to B_.

We have now a series of parallelograms as FQ, TP, SN,
and AD bisects opposite sides in each. Thus the centre

of gravity of each parallelogram lies on AD [Prop. 9], and
therefore the centre of gravity of the figure made up of them
all lies on AD.
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Let the centre of gravity of all the parallelograms taken
together be 0. Join OH and produce it; also draw CV

parallel to DA meeting OH produced in V.

Now, if n be the number of parts into which AC is divided,

AADC : (sum of triangles on AN, NP .... )

= AC_ : (AN' + NP' + ...)

=n:X

= AC : AN.
Similarly

A ABD : (sum of triangles on AM, ML .... ) = AB : AM.

And A C : AN = AB : A3I.

It follows that

AABC: (sum of all the small As)= CA : AxV

> VO : OH, by parallels.
Suppose 0 V produced to X so that

AABC:(sum of small As)=X0 : OH,

whence, dividendo,

(sum of parallelograms) : (sum of small As)=XH:TIO.

Since then the centre of gravity of the triangle ABC is at tt,
and the centre of gravity of the part of it made up of the
parallelograms is at 0, it follows fl'om Prop. 8 that the centre

of gravity of the remaining portion consisting of all the small
triangles taken together is at X.

But this is impossible, since all the triangles are on one side
of the line through X l_rallel to AD.

Therefore the centre of gravity of the triangle cannot but
lie on AD.

Alternative proof.

Suppose, if possible, that H, not lying on AD, is the centre
of gravity of the triangle ABC. Join AH, BH, CH. Let

E, E be" the middle points of CA, AB respectively, and join
DE, EF, FD. Let EF meet AD in 3/.
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Draw FK, EL parallel to AH meeting Btt, CH in K, L

respectively. Join KD, liD, LD, KL. Let KL meet DH in
IV, and join MN.

A

8 D G

Since DE is parallel to AB, the triangles ABC, EDC are
similar.

And, since 02]'= EA, and EL is parallel to All, it follows
that CZ =Ltt. And CD= DB. Thereibre BH is parallel
to DL.

Thus in the similar and similarly situated triangles ABU,
.EDC the straight lines AH, BH are respectively parallel to
EL, DL ; and it follows that H, L are similarly situated with

respect to the triangles respectively.

But H is. by hypothesis, the centre of gravity of ABC.
Therefore L is the centre of gravity of El)(]. [Prop. 11]

Similarly the point K is the centre of gravity of the

triangle FBD.

And the triangles FBD, EDU are equal, so that the centre

of gravity of both together is at the middle point of KL, i.e. at
the point N.

The remainder of the triangle ABC, after the triangles FBD,
EDC are deducted, is the parallelogram AFDE, and the centre
of gravity of th/s parallelogram is at _I, the intersection of its

diagonals.

It follows that the centre of gravity of the whole triangle

ABU must lie on M_V; that is, MN must pass through H, which
is impossible (since M_ is parallel to AH).

Therefore the centre of gravity of the triangle ABU cannot
but lie on AD.
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Proportion 14.

It follows at once from the last proposition that the centre
of gravity of any triangle is at the intersection of the lines drawn

from any two angles to the middle points of the apposite sides
respectively.

Proposition 15.

If AD, BC be the two parallel sides of a trapezium ABCD,

AD being the smaller, and if A D, BC be bisected at E, F
respectively, theT_ the centre of gravity o/the trapeziu, m is at a
point G an EF such that

GE : GF= (2BC + AD) : (2AD + BC).

Produce BA, CD to meet at 0. Then FE produced will

also pass through 0, since AE = ED, and BF = FC.
o

A o

B F C

Now the ccntre of gravity of the triangle OAD will lie on
OE, and that of the triangle OBC will lie on OF. [Prop. 13]

It follows that the centre of gravity of the remaindcr, the
trapezimn ABCD, will also lie on OF. [Prop. 8]

Join BD, and divide it at L, M into three equal parts.

Through Z, M draw .PQ, RS parallel to BC meeting BA in
P, R, FE in W, V, and CD in Q, S respectively.

Join DF, BE meeting PQ in H and RS in K respectively.

Now, since BL = _ BD,

FH = _FD.
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Therefore//is the centre of gravity of the triangle DBC'.

Similarly, since EK = ½BE, it follows that K is the centre
of gravity of the triangle ADB.

Therefore the centre of gravity of the triangles DBC, ADB

together, i.e. of the trapezium, lies on the line HK.
But it also lies on OF.

Therefore, if OF, HK meet in G, G is the centre of gravity

of the trapezium.

Hence [Props. 6, 7]

DBC : A ABD = KG : GH

=VG: GW.

But A DBC : A A BD = BC : AD.

Therefore BC : A D = VG : G W.

It follows that

(2BC + AD) : (2AD + BC) = (2 VG + G W.) : (2G W + VG)

= EG : GF.
Q.E.D.

* This easy deduction from Prop. 14 is assumed by Archimedes without
proof.
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BOOK II.

Proposition I.

If P, P' be two parabolic seqme_ts and D, E their centres

of gravity respectively, the centre of gravity of the two segments

taken together will be at a poi_t C on DE determined by the
relation

P : P'= CE : CD*.

In the same straight line with DE measure El:t, EL each

equal to DC, and DK equal to DH; whence it follows at once
that DK-- CE, and also that KC = CZ.

* Thisprolm_ionisreallya particularcaseofProps.6,7 ofBookI and
is therefore hardly necessary. As, however, Book IT. relates exclusively to
parabol/e segments, Archimedes' object was perhaps to emphasize the fact
that the magnitudes in L 6, 7 might be parabolic segments as well as
rectilinear figures. His procedure is to substitute for the segments rect-
angles of equal area, a substitution which is rendered possible by the results
obtained in his separate treatise on the Quadrature of the Parabola.



204 ARCHIMEDES

Apply a rectangle MN equal in area to the parabolic
segment P to a base equal to KH, and place the rectangle so
that KH bisects it, and is parallel to its base.

Then D is the centre of gravity of MN, since KD = DH.

Produce the sides of the rectangle which are parallel to KH,
and complete the rectangle NO whose base is equal to HL.

Then E is the centre of gravity of the rectangle NO.

Now (MN) : (NO) = KH : HL

= DH : Eli

=CE: CD

=P:p'.

But (MN) = P.

Therefore (i_0) = P'.

Also, since C is the middle point of KL, C is the centre
of gravity of the whole parallelogl_m made up of the two
parallelograms (MN), (NO), which are equal to, and have the

same centres of gravity as, P, P' respectively.

Hence C is the centre of gravity of P, P' take_l together.

Definition and lemmas preliminary to Proposition _.

" If in a segment bounded by a straight line and a section

of a right-angled cone [a parabola] a triangle be inscribed

having the same base as the segment and equal height, if again
triangles be inscribed in the remaining segments having the
same bases as the segments and equal height, and if in the
remaining segments triangles be inscribed in the same manner,
let the resulting figure be said to be inscribed in the

reoognimed manner (_/u_pi_ _,_pd_b_oOa_) in the segment.

And it is plain

(1) that the lines joining the two angles o/the figure so inscribed

which are nearest to the vertex of the se4tment, and the _eoet
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pairs of angles in order, will be parallel to the base of the

segment,

(2) that the said lines will be bi_,ected by the diameter of the

segment, and

(3) that they wiU cut the diameter i_z the proportions of the
successive odd numbers, the number one having reference to [the

length adjacent to] the vertex of the segment.

And these properties will have to be proved in their proper

places (_v ra_ _'ci_ea_v)."

[The last words indicate an intention to give these pro-

positions in their proper connexion with systematic proofs; but
the intention does not appear to have been carried out, or at
least we know of no lost work of Archimedes in which they

could have appeared. The results can however be easily
derived from propositions given in the Quadrature of the
Parabola as fbllows.

(1) Let BRQPApTrb be a figure inscribed'in the recog-
nised manner' in the parabolic segment BAb of which Bb is
the base, A the vertex and A0 the diameter.

B

Q F

E

A

b

Bisect each of the lines BQ, BA, QA, Aq, Ab, qb, and

through the middle points draw lines parallel to AO meeting
Bb in G, F, E, e, f, g respectively.
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These lines will then pass through the vertices R, Q, P,

p, q, r of the respective parabolic segments [Quadrature of the
Parabola, Prop. 18], i.e. through the angular points of the
inscl_bed figure (since the triangles and segments are of equal

height).

Also BG = GF = FE = EO, and Oe = ef =fg = gb. But
BO = Ob, and therefore all the parts into which Bb is divided

are equal.

If now AB, RG meet in L, and Ab, rg in l, we have

BG : GL = BO : OA, by parallels,

=bO : OA

=bg : gl,
whence GL = gl.

Again [ibid., Prop. 4]

GL : LR= BO : OG

= bO : Og

=gl : lr ;
and, since GZ =g/, ZR---lr.

Therefore GR, gr are equal as well as parallel.

Hence GRrg is a parallelogram, and Rr is parallel to Bb.

Similarly it may be shown that Pp, Qq are each parallel
to Bb.

(2) Since RGgr is a parallelogram, and RG, rg are
parallel to A 0, while GO = Og, it follows that Rr is bisected

by AO.

And similarly for Pp, Qq.

(3) Lastly, if V, W, X be the points of bisection of Pp,
Qq, Rr,

AI r. A W : AX : AO=PV _ : QW _ : RX" : BO"

=1:4:9:16,

whence AV: VW : WX : XO= l : 3 : 5 : 7.]
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Proposition 2.

If a figure be 'inscribed in the recognised manner' in a

parabolic segment, the centre of gravity of the figure so inscribed
will lie on the diameter of the segme_t.

For, in the figure of the foregoing lemmas, the centre of

gravity of the trapezium BRrb must lie on XO, that of the
trapezium 17Qqr on WX, and so on, while the centre of gravity
of the triangle PAp lies on A V.

Hence the centre of gravity of the whole figure lies on AO.

Proposition 3.

If BAB', bab' be two similar parabolic segments whose
diameters are A O, ao respectively, and i/a figure be inscribed
in each segment ' in the recognised manner,' the number of sides

in each figure being equal, the centres o/gravity of the inscribed
figures will divide A O, ao in the san_e ratio.

[Archimedes enunciates this proposition as true of similar

segments, but it is equally true of segments which are not

similar, as the course of the proof will show.]

Suppose BRQPAP'Q'R'B', brqpap'q'r'b' to be the two
figures inscribed 'in the recognised manner.' Join PP', QQ',

Rtt' meeting AO in L, M, IV, and pp', qq', rr' meeting ao
in l, m, n.

Then [Lemma (3)]
AL : ZM : M1V : IVO

=1:3:5:7

=al : Im : mn : no,

so that A O, ao are divided in the same proportion.

Also, by reversing the proof of Lemma (3), we see that

PP' :pp' = QQ' : qq ' = RR' : rr' = BiB' : bb'.

Since then R/_' : BB'= rr' : bb', and these ratios respec-

tively determine the proportion in which _V0, no axe divided
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by the centres of gravity of the trapezia BRR'B', brr'b' [I. 15],
it follows that the centres of gravity of the trapezia divide N0,
_o in the same ratio.

B

b R

q r _/ _ 0

_! n A 0

f pf

B"

Similarly the centres of gravity of the trapezia RQQ'I_',
r_q'r" divide MAr, mn in the same ratio respectively, and so on.

Lastly, the centres of gravity of the triangles PAP', pap'
divide AZ, al respectively in the same ratio.

Moreover the corresponding trapezia and triangles are, each

to each, in the same proportion (since their sides and heights

are respectively proportional), while A 0, ao are divided in
the same proportion.

Therefore the centres of gravity of the complete inscribed

figures divide AO, ao in the same proportion.

Proposition 4.

The centre of gravity of any parabolic segment cut off by a

straight line lies on the diameter o/the segment.

Let BAB" be a parabolic segment, A its vertex and AO its
diameter.

Then, if the centre of gravity of the segment does not lie on

AO, suppose it to be, if possible, the point F. Draw FE

parallel to A O meeting BB' in E.



ON THE EQUILIBRIUM OF PLANF__S II. _09

Inscribe in the segment the triangle ABB' having the same
vertex and height as the segment, and take an area S such
that

A A BB' : S = BE : EO.

L

K -- 7 B

F -- Z_
A

B'

We can then inscribe in the segment 'in the recognised

manner' a figure such that the segments of the parabola left
over are together less than S. [For Prop. 20 of the Quadr, ture

of the Parabola proves that, if in any segment the triangle with
the same base and height be inscribed, the triangle is greater
than half the segment ; whence it appears that, each time that

we increase the number of the sides of the figure inscribed ' in
the recognised manner,' we take away more than half of the

remaining segments.]

Let the inscribed figure be drawn accordingly; its centre

of gravity then lies on A 0 [Prop. 2]. Let it be the point H.

Join HF and produce it to meet in K the line through B

parallel to AO.

Then we have

(inscribed figure) : (remainder of segmt.)> AABB' : S
> BE : EO

>KF: FH.

Suppose L taken on HK produced so that the former ratio is
equM to the ratio ZF : FH.

H. 4. 14
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Then, sinceH isthe centreof gravityof the inscribed

figure,and F that of the segment, L must be the centre

of gravityof allthe segmentstaken togetherwhich form thc

remainder of the original segment. [I. 8]

But this is impossible, since all these segments lie on one

side of the line drawn through L parallel to AO [Cf. Post. 7].

Hence the centre of gravity of the segment cannot but lie
on AO.

Proposition 5.

If in a parabolic segment a figure be inscribed 'in the

recognised manner; the centre of gravity of the segn_znt is nearer
to the vertex of the segme_tt than tile centre of gravity of the

inscribed figure is.

Let BAB" be the givcn segment, and AO its diameter.
First, let ABB' be the triangle in- s
scribed 'in the recognised manner.'

Divide A O in F so that AF = 2FO ;

F is then the centre of gravity of the Q

triangle ABB'.

Bisect AB, AB' in /), D' respec-
tively, and join DD' meeting AO in E.
Draw DQ, D'Q" parallel to OA to meet
the curve. QD, Q'D' will then be the

diameters of the segments whose bases

are AB, Aft, and the centres of gravity _,
of those segments will lie respectively

on QD, Q'D' [Prop. 4]. Let them be H, H', and join HH'
meeting A 0 in K.

Now QD, Q'D' are equal', and therefore the segments of
which they are the diameters are equal [On Conoids and
Spheroids, Prop. 3].

* This may either be inferred from Lemma (1) above (since QQ', DD' are
beth parallel to BB'), or from Prop. 19 of the Quadrature of the Parabola, which
applies equally to Q or Q'.
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Also, since QD, Q'D' are parallel _, and DE = ED', K is the
middle point of HH'.

Hence the centre of gravity of the equa| segments AQB,
AQ'B' taken together is K, where K lies between E and A.
And the centre of gravity of the triangle ABB' is F.

It follows that the centre of gravity of the whole segment
BAB' lies between K and F, and is therefore nearer to the
vertex A than F is.

Secondly, take the five-61ded figure BQA Q'B' inscribed ' in
the recognised manner,' QD, Q'D' being, as before, the diameters

of the segments AQB, AQ'B',

Then, by the first part of this proposition, the centre of

gravity of the segment ,4 QB (lying of' course on QD) is nearer
to Q than the centre of gravity of the triangle AQB is. Let

the centre of gravity of the segment be H, and that of the
triangle /.

Similarly let H' be the centre of gravity of the segment
AQ'B', and I' that of the triangle AQ'B'. B

It follows that the centre of gravity
of the two segments AQB, AQ'B' taken

together is K, the middle point of HH',

and that of the two triangles A QB, A Q'B' _ /_

is L, the middle point of I['. a

If now the centre of gravity of the
triangle ABB' be F, the centre of gravity
of' the whole segment JBAB' (i.e. that of

the triangle ABB' and the two segments
AQB, AQ'B' taken together) is a point

B'
G on KF determined by the proportion

(sum of segments AQB, AQ'B') : AABB'= FG : GK. [I. 6, 7]

* There is clearly some interpolatwn in the text here, which has the words
_a_ _Tt_ fapa_ky_,b_,pat_v d¢r_ v_ OZHI. It is not yet proved that H'D'DH is
a parallelogram ; this can only be inferred from the fact that H, H' divide QD,

Q'D' respectively in the same ratio. But this latter property does not appear

till Prop. 7, and is then only enunciated of 8imdar segments. The interpolstion
must have been made before Eutoeius' time, because he has a nots on the

phrase, and explains it by gravely assuming that H, H t divide QD, Q'D' respec-
tively in the same ratio.

14--2
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And the centre of gravity of the inscribed figure BQAQ'B'
is a point F' on LF determined by the proportion

(AAQB+AAQ'B') :AABB'=FF': F'L. [I. 6, 7]

[Hence FG : GK > FF' : P L,

or GK : FG < F'L : FF',

and, componendo, FK : FG < FL : FF', while FK > FL.]

Therefore FG > FF', or G lies nearer than F' to the vertex A.

Using this last result, and proceeding in the same way,
we can prove the proposition for any figure inscribed' in the
recognised manner.'

Proposition 6.

Given a segment of a parabola cut off by a straight line, it is

possible to inscribe in it ' in the recognised manner' a figure such
that the distance between the centres of gravity of the segment and

of the inscribed figure is less than any assigned length.

Let BAB' be the segment, A0 its diameter, G its centre

of gravity, and ABB' the triangle inscribed ' in the recognised
manner.'

Let D be the assigned length and S an area such that

AG : JD=AABB' : S.

In tile segment inscribe ' in the recognised manner' a figure
such that the sum of the segments left over is less than S.

Let F be the centre of gravity of the inscribed figure.

We shall prove that FG < D.

For, if not, FG must be either equal to, or greater than, D.

And clearly

(inscribed fig.) : (sum of remaining segmts.)

> AABB" : S /
>AG:D

> A G : FG, by hypothesis (since FG,_ 1)). [
J
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Let the first ratio be equal to the ratio KG : FG (where K
lies on GA produced); and it follows that K is the centre of

gravity of the small segments taken together. [I. 8]

B

K _ ID

But this is impossible, since the segments are all on the

same side of a line drawn through K parallel to BB'.

Hence FG cannot but be less than D.

PropoliUon 7.

If there be two similar parabolic segments, their ce_tres of
gravity divide their diameters in the same ratio.

[This proposition, though enunciated of similar segments

only, like Prop. 3 on which it depends, is equally true of
any segments. This fact did not escape Archimedes, who
uses the proposition in its more general form for the proof of

Prop. 8 immediately following.]

Let BAB', bab' be the two similar segments, AO, ao their

diameters, and G, g their centres of gravity respectively.

Then, if G, g do not divide A O, ao respectively in the same

ratio, suppose H to be such a point on A 0 that

AH : HO = ag : go ;
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and inscribe in the segment BAB' ' in the recognised manner'
a figure such that, if F be its centre of gravity,

GF < GH. [Prop. 6]
B

O q

A a o

Inscribe in the segment l_b" in the recognised manner' a

similar figure; then, iff be the centre of gravity of this figure,

a9 < af. [Prop. 5]

And, by Prop. 3, af : fo = AF : FO.

But AF : FO < AH : HO

< ag : go, by hypothesis.

Therefore af :fo < ag : go ; which is impossible.

It follows that G, g cannot but divide AO, ao in the same
ratio.

PropollUon 8.

If A 0 be the diameter of a parabolic segment, and G its
centre of gravity, then

AG=_} GO.

Let the segment be BAB'. Inscribe thc triangle ABB' 'in
the recognised manner,' and let F be its centre of gravity.

Bisect AB, AB' in D, D', and draw DQ, D'Q' parallel to OA
to meet the curve, so that QD, Q'D' are the diameters of the

segments A QB, A Q'B' respectively.

Let H, H" be the centres of gravity of the segments AQB,
AQ'B' respectively. Join QQ', HH' meeting AO in V, K
respectively.
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K is then the centre of gravity of the two segments AQB,
AQ'B' taken together. B

Now A G : GO = QH : HD, _/

[Prop. 7]

whence AO : OG -- QD : liD.

But AO=4QD [as is easily proved

by means of Lemma (3), p. 206]. a_o_ v,L_, , .. ,

Therefore OG = 4HD ;

and, by subtraction, AG = 4QH.

Also, by Lemma (2), QQ" is paral-
lel to BB' and therefore to DD'. It a'

follows from Prop. 7 that HH" is also parallel to QQ' or DD ",

and hence QH = VK.

Therefore A G = 4 VK,

and A V + KG = 3 VK.

Measuring VL along VK so that VL = ._A V, we have

KG = 3LK ........................... (1).

Again AO = 4A V [Lemma (3)]

=3AL, since A V=3VL,

whence AL = _ A O = OF .................. (2).

Now, by I. 6, 7,

A ABB' : (sum of segmts. AQB, AQ'B')= KG : GF,

and AABB' = 3 (sum of segments AQB, AQ'B')

[since the segment ABB' is equal to _ A ABB' (Quadrature of

the Parabola, Props. 17, 24)].

Hence KG = 3GF.

But KG--3LK, from (1) above.

Therefore I,F = LK �KG+ GF

= 5GF.
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And, from(2),

ZF=(AO-AL- OF)=½ AO= OF.
Therefore OF= 5GF,

and OG = 6GF.
But AO = 3OF= 15GF.

Therefore, by subtraction,
AG=9GF

--_Go.

Proposition 9 (Lemma).

If a, b, c, d be four lines in continued proportion and in

descending order of magnitude, and if

d : (a-d)--x: _(a-c),

and (2a + 4b + 6c + 3d) : (5a + 10b + 10c + 5d) = y : (a - c),

it i,_required to prove that
x+y=_a.

[The following is the proof given by Archimedes, with

tho only difference that it is set out in a
algebraical instead of geometrical notation.

This is done in the particular case simply in

order to make the proof easierto follow. ,,- r

Archimedes exhibitshis linesin the figure ]'
reproducedin the margin,but,now thatitis

possible to use algebraical notation, there is o
no advantage in using the figure and the more
cumbrous notation which only obscures the course
of the proof. The relation between Archimedes'

figure and the letters used below is as follows; B

AB = a, FB = b, AB = c, EB = d, ZH = x, H@ = y, AO = z.]
a b c

We have b - c = d,........................... (1),

a-b b-c c-d
whence --- = -- -- ----

b c d '

a-b b-c a b c
and therefore b-c-c_-b c d ............... (2).

:Now 2(a+b)=a+b= a+b. b= a-c. b-c= a-c
2c c b c b-c c-d c-d"
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And, in like manner,

b+c b+c c a-c
d - c "_t=c---d"

It follows from the last two relations that

a-c 2a+3b+c
c --d = 2c + d .................. (3).

Suppose z to be so taken that

2a+4b+4c+2d a-c
=-. .............. (4),2c+d z

so that z < (c - d).

a-c+z 2a+4b+6c d���Therefore

a--c- = 72(-a+d) +4(b+c)"

And, by hypothesis,

a-c 5(a+d)+lO(b+c)
y 2a+4b+6c+3d '

so that a-c+z 5(a+d)+10(b �D�t�5
y - 2(a+d)+4(b+c) =2 ........ (.5).

Again, dividing (3) by (4) crosswise, we obtain

z 2a+3b+c

c-d 2(a+d)+_(b+c)'

c-d-z b+3c+2d

whence c - d - 2 (a + d) �4-(b+c) ............ (6).
But, by (2),

c-d a-b 3(b-c)_2(c-d)
-_/-- = --b-- = 3c 2d '

so that c-d (a-b)+3(b-c)+2(c-d)
d = b+3c+2d ......... (7).

Combining (6) and (7), we have

c - d - z =(a- b)+ 3(b- c)+ 2(c- d)
d 2(a+ d)-+4(b+ c) '

c-z 3a + 6b + 3c

whence d ="2 (a + d) + 4 (b + c) ............... (8).
And, since [by (1)]

c-d b-c a-b

c+d-b+c a+b'
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c-d c+dwe have
a-c b+c+a+b'

whence a-d a+2b+2c+d 2(a+d)+4(b+c)
/z---c = a+2b+c "=--2(a+c)+4b ...... (9).

a-d _2(a +d) + 4(b+c)Thus
_(a-c) _{2(a+c)+4b} '

and therefore, by hypothesis,

d 2(a+d)+4(b+c)

x {2(a+ c)+ 4b}
But, by (8), c - z 3a + 6b + 3c

d - 2(a+d)+4(b-_-c);

and it follows, ex aequali, that

c-z 3(a+c)+6b 5 3 5

x =_{2(a+c)_g4b} =8 " 2= 2"

And, by (5), a-e+z 5
y 2"

Therefore -5 = st
2 x+y'

or x+ y =_a.

Proposition 10.

If PtrB_B be the portion of a parabola intercepted between

two parallel chards PP', BI_ bisected respectively in N, 0 by
the diameter ANO (N being nearer than 0 to A, the vertex
of the segments), and if NO be divided into five equal parts of

which LM is the middle one (L being nearer than M to N), then,
if G be a point on JLM such that

LG : GM = BO". (2PN + BO) : PN'. (2BO + PN),

G will be the centre of gravity of the area PtrB'B.

Take a line ao equal to A O, and an on it equal to AN. Let

p, q be points on the line ao such that

ao : aq = aq : an ..................... (1),

ao : an = aq : ap ..................... (2),

[whence ao : aq = aq : an = an : ap, or ao, aq, an, ap are lines in

continued proportion and in descending order of magnitude].

Measure along GA a length GF such that

op : ap = OL : GF ..................... (3).
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Then, since PAr, BO are ordinates to ANO,

BO 1 : PN _= AO : AN

aO : an

= ao_ : aq', by (1),

so that BO : P2t = ao : aq ........................... (4),

and BO s : .PN s = ao" : aqs

= (ao : a9). (aq : a_O. (an : ap)

= ao : ap ........................... (5).

B

AI P o f 1 ja p n q o

S*

Thus (segment BAB') : (segment PAP')
= ABAB': APAt :u

= BO" : PN _

----ao *,ap_

whence

(area PP'B'B) : (segment PAt)') = op : ap

= OL : OF, by (3),

= _ON : GF ......... (6).

Now BO_.(2PN+BO) : BOS=(2p.hr+BO) : BO

= (2aq + ao) : ao, by (4),

BO s : PN"= ao : ap, by (5),

and PxV s : PN_.(2BO+PN)=PN:(2BO+PN)

= aq : (2ao + aq), by (4),

= ap : (2an + ap), by (2).
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Hence, ex aequali,

BO _. (2PN 4- BO) : PN'. (2BO 4- PN) = (2aq 4- ao) : (2an 4- ap),

so that, by hypothesis,

JLG : GM = (2aq 4- ao) : (2an 4- ap).

Componendo, and multiplying the antecedents by 5,

ON : GM= {5 (ao 4- ap) + 10 (aq 4- an)} : (2an 4- ap).
But ON : OM= 5 : 2

= {5 (ao + ap) + 10 (aq 4- an)} : {2(ao 4-ap) 4-¢ (aq 4- an)l.
It follows that

ON : OG = [5 (ao + ap) + 10 (aq + an)} : (2ao + 4aq + 6an + 3ap).
Therefore

( 2ao + 4aq + 6an + 3ap) : [5 (ao + ap) + 10 (aq + an)} = OG : OIV

=OG: on.
And ap : (ao - ap) = ap : op

= GF : OL, by h)Tothesis,

= GF: _on,

while ao, aq, an, ap are in continued proportion.

Therefore, by Prop. 9,

GF 4- OG = OF-- _ao = _OA.

Thus F is the centre of gravity of the segment BAB'. [Prop. 8]

Let H be the centre of gravity of the segment .PAP', so
that AH = _AN.

And, since AF = _ A O,

we have, by subtraction, HF = _ ON.

But, by (6) above,

(area P.P'B'B) : (segment PAP') = _OiV : GF

= HF : FG.

Thus, since F, H are the centres of gravity of the segments
BAB', .PAP' respectively, it follows [by I. 6, 7] that G is the
centre of gravity of the area PP'B'B.



THE SAND-RECKONER.

"THERE are some, king Gelon, who think that the number
of the sand is infinite in muhitude; and I mean by the sand

not only that which exists about Syracuse and the rest of Sicily
but also that which is found m every region whether inhabited
or uninhabited. Again there are some who, without regarding

it as infinite, yet think that no number ha_ been named which
is great enough to exceed its multitude. And it is clear that

they who hold this view, if they imagined a mass made up of
sand in other respects as large as the mass of the earth, in-
cluding in it all the seas and the hollows of the earth filled up
to a height equal to that of the highest of the mountains,

would be many times further still from recognising that any
number could be expressed which exceeded the multitude of

the sand so taken. But I will try to show you by means of
geometrical proofs, which you will bc able to follow, that, of the
numbers named by me and given in the work which I sent to

Zeuxippus, some exceed not only the number of the mass of

sand equal in magnitude to the earth filled up in the way
described, but also that of a mass equal in magnitude to the
universe. Now you are aware that 'universe' is the name

given by most astronomers to the sphere whose centre is the
centre of the earth and whose radius is equal to the straight
line between the centre of the sun and the centre of the earth.

This is the common account (rd _[pa_op_e_a), as yOUhave heard
from astronomers. But Aristarehus of Samos brought out a
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book consisting of some hypotheses, in which the premisses lead

to the result that the universe is many times greater than that
now so called. His hypotheses are that the fixed stars and the
sun remain unmoved, that the earth revolves about the sun in

the circumference of a circle, the sun lying in the middle of the
orbit, and that the sphere of the fixed stars, situated about the
same centre as the sun, is so great that the circle in which he

supposes the earth to revolve bears such a proportion to the
distance of the fixed stars as the centre of the sphere bears to

its surface. Now it is easy to see that this is impossible; for,
since the centre of the sphere has no magnitude, we cannot

conceive it to bear any ratio whatever to the surface of the
sphere. We must however take Aristarchus to mean this:
since we conceive the earth to be, as it were, the centre of

the universe, the ratio which the earth bears to what we
describe as the 'universe' is the same as the ratio which the

sphere containing the circle in which he supposes the earth to

revolve bears to the sphere of the fixed stars. For he adapts
the proofs of his results to a hypothesis of this kind, and in

particular he appears to suppose the magnitude of tile sphere
in which he represents the earth as moving to be equal to what
we call the' universe.'

I say then that, even if a sphere were made up of the sand,

as great as Aristarehus supposes the sphere of the fixed stars
to be, I shall still prove that, of the numbers named in the
Pri_wiples*, some exceed in multitude the number of the

sand which is equal in magnitude to the sphere referred to,
provided that the following assumptions be made.

1. The perimeter of the earth is about 3,000,000 stadia and
not greater.

It is true that some have tried, as you are _)f course aware,
to prove that the said perimeter is about 300,000 stadia. But

I go further and, putting the magnitude of the earth at ten
times the size that my predecessors thought it, I suppose its

perimeter to be about 3,000,000 stadia and not greater.

'Ap_al was apparently the title of the work sent to Zeuxippus. Cf. the
note attaohed to the enumeration of lost works of Archimedes in the Introduction,
Chapter II. adfin.
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2. The diameter of the earth is greater than the diameter of
the moon, and the diameter of the sun is greater than the diameter

of tile earth.

In this a_umption I follow most of the earlier astronomers.

3. The diameter of the sun is about 30 times the diameter of
the moon and not greater.

It is true that, of the earlier astronomers, Eudoxus declared

it to be about nine times as great, and Pheidias my father*

twelve times, while Aristarchus tried to prove that the diameter

of the sun is greater than 18 times but less than 20 times the
diameter of the moon. But I go even further than Aristarchus
in order that the troth of my proposition may be established

beyond dispute, and I suppose the diameter of the sun to be
about 30 times that of the moon and not greater.

4. The diameter of the sun is greater than the side of the

chiliagon inscribed in the greatest circle in the (sphere of the)
universe.

I make this assumptiont because Aristarchus discovered

that the sun appeared to be about v_vth part of the circle of
the zodiac, and I myself tried, by a method which I wzll now

describe, to find experimentally (_p'lavt_¢d_) the angle sub-
tended by the sun and having its vertex at the eye (_'dv _/wvlav,
elf _v _ _tXto_ dvap_t6_et r_tv xopv_dv _XOUtrav _ro_"tT_ g_et)."

[Up to this point the treatise has been literally translated
because of the historical interest attaching to the ipsissima
verba of Archimedes on such a subject. The rest of the work

can now be more freely reproduced, and, before proceeding to
the mathematical contents of it, it is only necessary to remark
that Archimedes next describes how he arrived at a higher and

a lower limit for the angle subtended by the sun. This he did

* 7o_ dgofi lrarpS_ is the correction of Blass for _'o0 "AKo_rarpo_ (Jahrb. f,
Philol. cxxwx. 1883).

_" This is not, strictly speaking, an assumption ; it is a proposition proved
later (pp. 224--6) by means of the result of an experiment about to be
described.
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by taking a long rod or ruler (Kavd_v), fastening on the end of it
a small cylinder or disc, pointing the rod in the direction of the
sun just after its rising (so that it was po_ible to look directly

at it), then putting the cylinder at such a distance that it just
concealed, and just failed to conceal, the sun, and lastly measur-

ing the angles subtended by the cylinder. He explains also the
correction which he thought it nccessa D" to make because "the
eye does not see from one point but from a certai.n area" (d_rd

al _#d_e_ o_x d_' _v_ _a_e_ov jgk_rovTt, dXXA d_'6 v_vo_
_*_g_o_).]

The result of the experiment was to show that the angle
subtended by the diameter of the sun was less than i_th part,

and greater than _2_-_thpart, of a right angle.

To prove that (on this assumption) the diameter of the sun
is greater than the side of a chiliago_,, or figure with 1000 equal

sides, i_cribed in a great vircle of the ' universe.'

Suppose the plane of the paper to be the plane passing

through the centre of the sun, the centre of the earth and the
eye, at the time when the sun has just risen above the horizon.
Let the plane cut the earth in the circle EHL and the sun

in the circle FKG, the centres of the earth and sun being C, 0

rcspoctively, and E being the position of the eye.

Further, let the plane cut the sphere of the ' universe' (i.e.
the sphere whose centre is C and radius CO) in the great
circle A OB.

Draw from E two tangents to the circle FKG touching it
at -P, Q, and from C draw two other tangents to the same circle

touching it in F, G respectively.

Let CO meet the sections of the earth and sun in H, K

respectively; and let CF, CG produced meet the great circle
AOBinA, B.

Join E0, OF, OG, OP, OQ, AB, and let AB meet CO in M.

Now CO > EO, since the sun is just above the horizon.

Therefore z PEQ > / FUG.
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Andz > 1
but < mR ) where R represents a right angle.

E

O

Thus L FCG < 1_4R, afortiori,

and the chord AB subtends an arc of the great circle which is

less than _th of the circumference of that circle, Le.

AB < (side of 656-sided polygon inscribed in the circle).

Now the perimeter of any polygon inscribed in the great
circle is less than _CO. [Cf. Measurement of a circle, Prop. 3.]

Therefore AB : CO < 11 : 1148,

and, afortiori, AB < a-_CO ........................ (a).

Again, since CA = GO, and AM is perpendicular to CO,
while OF is perpendicular to CA,

AM= OF.

Therefore AB = 2AM = (diameter of sun).

Thus (diameter of sun) < _CO, by (a),

and, afortiori,

(diameter of earth) < _CO. [Assumption 2]

H.A. 15
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Hence Cil + OK < -r_CO,

so that HK > ]_CO,

or CO : HI(< 100 : 99.

And CO > CF,

while ItK< EQ.

Therefore CF" EQ < 100 : 99 .................. (/!_).

Now in the right-angled triangles CFO, JEQO, of the sides
about the right angles,

OF = OQ, but EQ < CF (since EO < CO).

Therefore / OEQ : / OCF > CO : EO,

but < CF : EQ*.

Doubling the angles,

z PEQ : z A CB < CF : EQ

< 100 : 99, by (B) above.

But / PEQ > ._-_R, by hypothesis.

Therefore / A CB > _o9o9ooR

> _R.

It follows that the arc AB is greater than _l-_th of the circum-

ference of the great circle A OB.

Hence, afortiori,

AB > (side of chiliagon inscribed in great circle),

and AB is equal to the diameter of the sun, as proved above.

The following results can now be proved :

(diameter of 'universe')< 10,000 (diameter of earth),

and (diameter of' universe') < 10,000,000,000 stadia.

* The proposition here assumed is of course equivalent to the trigonometrical

formula which states that, if a, fl are the circular measures of two angles, each
less than s right angle, of which a is the greater, then

t_a a Bing
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(1) Suppose, for brevity, that d_ represents the diameter
of the ' universe,' da that of the sun, de that of the earth, and dm
that of the moon.

By hypothesis, d, :_ 30d,_, [Assumption 3]

and de > d,_ ; [Assumption 2]
therefore d, < 30de.

Now, by the last proposition,

ds > (side of chiliagon inscribed in great circle),

so that (perimeter of chiliagon) < 1000d,

< 80,000de.

But the perimeter of any regular polygon with more sides
than 6 inscribed m a circle is greater than that of the inscribed
regular hexagon, and therefore greater than three times the
diameter. Hence

(perimeter of ehiliagon) > 8d=.

It follows that d= < 10,000de.

(2) (Perimeter of earth) :_ 3,000,000 stadia.

[Assumption 1]
and (perimeter of earth) > 8d_.

Therefore de < 1,000,000 stadia,

whence d_ < 10,000,000,000 stadia.

Assumption 5.

Suppose a quantity of sand taken not greater than a poppy-
seed, and suppose that it contains not more than 10,000 grains.

Next suppose the diameter of the poppy-seed to be not less
than -_th of a finger-breadth.

Orders and periods of numbers.

I. We have traditional names for numbers up to a
myriad (10,000); we can therefore express numbers up to a
myriad myriads (100,000,000). Let these numbers be called

numbers of the first order.

Suppose the 100,000,000 to be the unit of the second order,
and let the second order consist of the numbers from that unit

up to (100,000,000) _.

15_2
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Let this agMn be the unit of the third order of numbers
ending with (100,000,000)s; and so on, until we reach the
lO0,O00,O00th order of numbers ending with (100,000,000) '_,_,_,
which we willcallP.

II. Suppose the numbers from I to P justdescribedto

form the firstperiod.

LetP be the unitofthefirstorderofthesecondperiod,and

letthisconsistofthenumbers fromP up toIO0,O00,O00P.

Let the lastnumber be the unitof the secondorderof the

ssco_dp_r/od,and letthisend with(IO0,O00,O00)tP.

We cango on inthisway tillwe reachthelO0,O00,O00thorder

ofthesecondperiodendingwith(I00,000,000)_,_,_P, orP'.

III. Taking pt as the unit of the first order of the third

per/od, we proceed in the same way till we reach the
100,000,000th order of the third period ending with P'.

IV. Taking/Js as the unit of the first order of the fourth

period, we continue the same process until we arrive at the
100,000,000th order of the 100,000,000th period ending with

pl_,_,_.. This last number is expressed by Archimedes as "a
myriad-myriad units of the myriad-myriad-th order of the

myriad-myriad-th period (al tLup_a_.r _vpto_7 _ ,r em6_ov t_vpta-
Ktat_up_c_r_v dp_r_v /_vplat /_vp_d_e_)," which is easily seen
to be 100,000,000 times the product of (100,000,000) _,m,'_ and
pg,._.m.i.e, p_oo,o_,_.

[The scheme of numbers thus described can be exhibited
more dearly by means of indices as follows.

FIRST PERIOD,

First order. Numbers from 1 to 108.

E_cond order ..... 10" to 10z".

Third order ..... 10"e to 10_.

(lOS)th order. ,, ,, 10s'(_¢'-' to lOSA¢(P, say).
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SECOND PERIOD.

First order. Numbers from P. 1 to P. 108.

Second order ..... P . 10. to P . 10_e.

(10a)th order ..... P. 108"('_-11 to

P.10 ''_ (or P').

(10*)TH PERIOD.

First order. ,, ,, P_--_. 1 to P_-_. 10'.

Second order. .... p_-l. 10. to P_-_. 10_.

(108)th order ..... p_0_-_. 10.._°'-_ to

pl_-_. 10,._ (i.e. ply).

The prodigious extent of this scheme will be appreciated

when it is considered that the last number in the first period
would be represented now by 1 followed by 800,000,000 ciphers,
while the last number of the (108)th period would require
100,000,000 times as many ciphers, i.e. 80,000 million millions
of ciphers.]

Octads.

Consider the series of terms in continued proportion of
which the first is 1 and the second 10 [i.e. the geometrical
progression l, 101, l0 s, l(P, ...]. The first octad of these terms

[i.e. l, 10 I, l0 t, ... 107] fall accordingly under the first order
of the first period above described, the second octad [i.e.

10., 10' .... 10I°] under the second order of the first period, the

first term of the octad being the unit of the corresponding
order in each case. Similarly for the third octad, and so on.
We can, in the same way, place any number of octads.

Theorem.

If there be any n_mber of terms of a series in continued
proportion, say A_, A2, As, ... A,_ .... A,,... Am_.,-,... of which

Aa = 1, A_ = 10 [so that the series forms the geometrical pro-

gression 1, 101, 10_,...10 m-1 .... 10_--1,...10 _+_-2 .... ], and if any
two terms as A,_, An be taken and multiplied, the product
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AT,. A,, will be a term in the same series and will be as many

terms distant from A, as A,_ is distant from A_; also it will be
distant from A_ by a number of terms less by one than the sum

o/the nuonbers of terms by which An and An re._ectively are
distant from A1.

Take the term which is distant from A,, by the same
number of terms as A,. is distant from A_. This number of

terms is m (£he first and last being both counted). Thus the
term to be taken is m terms distant from A_, and is therefore
the term A,,+n__.

We have therefore to prove that

A,_. A_ = A,,+,,_,.

Now terms equally distant from other terms in the con-
tinued proportion axe proportional.

Thus A,, _Am+,-,
AI AN

But An = An. A_, since A, = 1.

Therefore A,,+,,_, = AM. A .......................... (1).

The second result is now obvious, since An is m terms

distant from A_, A_ is n terms distant from A,, and A,,,+___ is

(m + n - 1) terms distant from A_.

Application to the number of the sand.

By Assumption 5 [p. 227],

(diam. of poppy-seed) _: z_ (finger-breadth);

and, since spheres are to one another in the triplicate l_tio
of their diameters, it follows that

(sphere of diam. 1 finger-breadth) :_ 64,000 poppy-seeds
:_ 64,000 x 10,000

_¢640,000,000

:_ 6 units of second grains
order + 40,000,000 .of

units of first order sand.

(a fortiori) < 10 units of second
order of numbers.
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We now gradually increase the diameter of the supposed

sphere, multiplying it by 100 each time. Thus, remembering

that the sphere is thereby multiplied by 100' or 1,000,000, the

number of grains of sand which would be contained in a sphere

with each successive diameter may be arrived at as follows.

Diameter of sphere. Correzponding number of grains of sand.

(1) 100 finger-breadths < 1,000,O00x 10 units oft_xmd order
<(7th term of _ries)x(lOth term of

series)
< 16th term of sex_ies [i.e. 1016]
< [IO7 or] 10,000,000 units of the sa_w_d

order.

(2) 10,000 finger-breadths < 1,000,000 x (last number)
< (Tth term of series) x (16th term)
< 22nd term of series [i.e. 1021]
<[106 or] 100,000 unite of third order.

(3) 1 stadium < I00,000 units of third order.
(< 10,000 finger-breadths)

(4) 100 stadia < 1,000,000 x (last number)
< (Tth term of series) x (22nd term)
<: 28th term of series [10 _]
<: [10a or] 1,000 units of fourth order.

(5) 10,000 stadia < 1,000,000 × (last number)
< (Tth term of series) x (28th term)
< 34th term of series [10_]
< 10 units offifth order.

(6) 1,000,000 stadia < (7th term of series) x (34th term)
< 40thterm [10 _9]

< [107 or] 10,000,000 units of fifth order.
(7) 100,000,000 stadia < (7th term of series) x (40th term)

< 46th term [10 _]

< [10 _or] 100,000 unite of _h order.
(8) 10,000,000,000 stadia <: (7th term of series) x (46th term)

< 52nd term of series [1061]

<[10 _ or] 1,000 unite of seventh order.

But, by the proposition above [p. 227],

(diameter of' universe ') < 10,000,000,000 stadia.

Hence the number of grains of sand tohich could be c,on_ained

in a sphere of the size of our 'universe' is less than 1,000 units

of the seventh order of numbers [or lOS].
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From this we can prove further that a sphere of the size
attributed by Aristarchus to the sphere of the rived stars would
contain a number of grains of sand less than 10,000,000 units

of the eighth order of nvtmb_s [or lOSe+'= lO°t].

For, by hypothesis,

(earth) : (' universe ')= (' universe ') : (sphere of fixed stars).

And [p. 227]

(diameter of' universe ') < 10,000 (diam. of earth) ;
whence

(diam. of sphere of fixed stars) < 10,000 (diam. of' universe ').

Therefore

(sphere of fixed stars) < (10,000) s . (' universe ').

It follows that the number of grains of sand which would be

contained in a sphere equal to the sphere of the fixed stars

< (10,000) s × 1,000 units of seventh order

< (13th term of series) × (52nd term of series)

< 64th term of series [i.e. 10 _]

< [10 r or] 10,000,000 units of eighth order of numbers.

Concluaion.

"I conceive that these things, king Gelon, will appear
incredible to the great majority of people who have not studied
mathematics, but that to those who are conversant therewith

and have given thought to the question of the distances and
sizes of the earth the sun and moon and the whole universe the

proof will carry conviction. And it was for this reason that

I thought the subject would be not inappropriate for your
consideration."



QUADRATURE OF THE PARABOLA.

"ARCHIMEDES to Dositheus greeting.

" When I heard that Conon, who was my friend in his life-
time, was dead, but that you were acquainted with Conon and

withal versed in geometry, while I grieved for the loss not only
of a friend but of an admirable mathematician, I set myself the
task of communicating to you, as I had intended to send to

Conon, a certain geometrical theorem which had not been

investigated before but has now been investigated by me, and
which I first di_overed by means of mechanics and then
exhibited by means of geometry. Now some of the earlier

geometers tried to prove it possible to find a l_ectilineal area
equal to a given circle and a given segment of a circle; and

after that they endeavoured to square the area bounded by the
section of the whole cone* and a straight line, assuming lemmas

not easily conceded, so that it was recognised by most people
that the problem was not solved. But I am not aware that
any one of my predecessors has attempted to square the

segment bounded by a straight line and a section of a right-
angled cone [a parabola], of which problem I have now dis-

covered the solution. For it is here shown that every segment
bounded by a straight line and a section of a right-angled cone
[a parabola] is four-thh_ls of the triangle which has the same base

and equal height with the segment, and for the demonstration

* Thereappearsto be some corruptionhere: the expressionin the text is
_ 5Xou_o_ x_ou ro/_s, and it is not easy to give a naturaland intelligible
meaningto it. The section of ' the wholecone' mightperhapsmeana ecetion
cuttingright throughit, i.e. an ellipse,and the' straightline' mightbean axis
or a diameter. But Heibergobjects to the suggestionto readr_ _lou
_ov _o/_r, in viewof theadditionof _a_e_0dat,on thegroundthat the former
expression alwayssignifies the whole of an ellipse, never a segment of it
(Qua_tio_s Archim_I_, p. 149).
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of this property the following lemma is assumed: that the
excess by which the greater of (two) unequal areas exceeds

the less can, by being added to itself, be made to exceed any
given finite area_ The earlier geometers have also used this
lemma ; for it is by the use of this same lemma that they have

shown that circles are to one another in the duplicate ratio of
their diameters, and that spheres are to one another in the

triplicate ratio of their diameters, and further that every
pyramid is one third part of the prism which has the same base

with the pyramid and equal height; also, that every cone is
one third part of the cylinder having the same base as the cone

and equal height they proved by assuming a certain lemma
similar to that aforesaid. And, in the result, each of the afore-

said theorems has been accepted _ no less than those proved
without the lemm& As therefore my work now published has

satisfied the same test as the propositions referred to, I have

_ritten out the proof and send it to you, first as investigated
by means of mechanics, and afterwards too as demonstrated by
geometry. Prefixed are, also, the elementary propositions in

conics which are of service in the proof (avo_xe_a _oJv_x_ Xpdav

e_Xo_rrad_ vdv _rJ_e_v). Farewell."

]Proposition 1.

If from a point on a para-
bola a straight line be drawn
which is dther itself the axis or
parallel to the axis, as P V, and

if QQ" be a chord parallel to

the tange_t to the parabola at P
and meeting PV in V, then

QV=FQ'.

Conversely, if Q V= VQ', the
chord QQ' will be parallel _o the

tangent at P.

" The Greek of this passage is: oTp.flad_, _ ._ lrpo_,l_,b_ov Oecop_uirto
_¢_r0¢ p_&_:, _cr_ro_rcTa,_l_ev rodmov *'o_ X_a1*ot ciro_'yp_6w _'elrv_'t*wc&,a_.
Here it would seem that lrorw_re.g&a, must be wrong and that the l_SSive
nhould have been used.
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Proposition 2.

If in a parabola QQ' be a chord parallel to the tangent at P,
and if a straight llne be drawn through P which is either itself
the axis or parallel to the axis, and which meets QQ' in V and

the tangent at Q to the parabola in T, then
l PV= PT.

Q

T P Y

Proposition 3.

If from a point on a parabola a straight line be drau._
which is either itself the axis or parallel to the axis, as P V,

and if from two other points Q, Q' on the parabola straight
hnes be drawn parallel to the tangent at P and meeting _PV 9_
V, V' respectively, then

PV : PV' = QV _ : Q'V".

"And these propositions are proved in the elements of conics.'*"

Proposition 4.

If Qq be the base of any segment of a parabola, and P the
vertex of the segment, and if She diameter through any other point

R meet Qq in 0 and QP (produced if necessary) in F, then

Q V : VO ffi OF : FR.

Draw the ordinate R W to xPV, meeting QP in K.

* i.e. in the treatises on conic_ by Euclid and Aristaeus.
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Then PV: PW = QV* : RW*;

whence, by parallels,

PQ : PK .= pQ9 : PF".

.............. Q ............ Q

R 0

P v P

F

In other words, PQ, PF, PK are in continued proportion;
therefore

PQ : PF = PF : PK

= PQ + PF : PF +_PK

= QF : KF.
Hence, by parallels,

Qv: vo = OF : FI_.

lit is easily seen that this equation is equivalent to a change of
axes of coordinates from the tangent and diameter to new axes

consisting of the chord Qq (as axis of x, say) and the diameter
through Q (as axis of y).

a _

For, if QV= a, PV=-, where p is the parameter of the
P

ordinates to P V.

Thus, if QO = x, and RO = y, the above result gives

a OF

x_a=OF_y '
a

whence a OF x.-
2a-x y y

or py = x (2a - x).]



QUADRATURE OF THE PARABOLA. 237

Proposition 6.

If Qq be the base of any segme,_ of a parabola, P the vertex

of the segment, and P V its diameter, and if the diameter of the
parabola through any other point R meet Qq in 0 and the
tangent at Q in E, then

QO : Oq = ER : RO.

Let the diameter through R meet QP in F.

Then, by Prop. 4,
Q V : VO = OF : FR.

Since QV= Vq, it follows that

QV : qO = OF : OR ................ (1).

Also, if VP meet the tangent in T,

PT = P V, and theretbre EF= OF.

Accordingly, doubling the antecedents in (1), we have

Qq : qO = OE : OR,

whence QO : Oq = ER : RO.
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Propositions 6, 7%

Suppose a lever A OB placed horizontally and supported at
' its middle point O. Let a triangle BCD in which the angle C is

right or obtuse be suspended from B and O, so that C is attached

to 0 and CD is in the same vertical line with O. Then, if P be
such ar_ area as, when suspended from A, wgl keep the system in

e_uilibrium,
p = _/x BCD.

Take a point E on OB such that BE= 20E, and draw EFH
parallel to OCD meeting BC, BD in F, H respectively. Let G
be the middle point of FH.

D

Then G is the centre of gravity of the triangle BCD.

Hence, if the angular points B, C be set free and the
triangle be suspended by attaching F to E, the triangle will
hang in the same position as before, because EFG is a vertical

straight line. "For this is proved_-."

Therefore, as before, there will be equilibrium.

Thus P : AXBCD = OE : AO

=l :3,

or P = ½A BCD.

In Prop. 6 Archimedes takes the separate case in which the angle BCD of
the triangle is a right angle so that C coincides with O in the figure and F with
K. He then proves, in Prop. 7, the same property for the triangle in which
BCD is an obtuse angle, by treating the triangle as the difference between two
right-angled triangles BOD, BOC and using the result of Prop. 6. I have com-
bined the two proportions in one proof, for the sake of brevity. The same
remark applies to the propositions following Props. 6, 7.

Doubtless in the lost book _rept i't,7_z_. Cf. the Introduction, Chapter II.,
o_fi..
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Propositions 8, 9.

Suppose a lever A OB placed horizontally and supported at
its middle point O. Let a triangle BCD, right-angled or obtuse-
angled at C, be suspended from the poir_ts B, E on OB, the

angular point C being so attached to E that the side CD is in the
same vertical line with E. Let Q be an area such that

AO : OE=ABCD : Q.

Then, if an area P suspended from A keep the system in
equilibrium,

P < A BCD but > Q.

Take G the centre of gravity of the triangle BCD, and draw

GH parallel to DC, i.e. vertically, meeting BO in H.

a o E u B

D

We may now suppose _he tliangle BCD suspended from H,
and, since there is equilibrium,

ZXBCD : P = AO : OH .................. (1),
whence P < ABCD.

Also A BCD : Q = AO : OE.

Therefore, by (l), A BCD : Q > A BCD : P,

and p > Q.

Propositions 10, 1 1.

_uppose a lever A OB placed horizontally and supported at O,
its middle point. Let CDEF be a trapezium which can be so
placed that its parallel sides CD, FE are vertical, while C is
vertically below O, and the other sides CF, DE meet in B. Let

EF meet BO in H, and let the trapezium be suspended by attaching
F to H and C to O. Further, suppose Q to be an area such that

AO : OH= (trapezium CDEF) : Q.
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Then, if P be the area which, when _uspended from A, keeps the
system in equilibrium,

P<Q.

The same is true in the particular case where the angles at

C, $' are right, and consequently C, F coincide with O, H

respectively.
Divide OH in K so that

(2CD + FE) : (2FE + CD) = HK : KO.

A 0 _ H B

Draw KG parallel to OD, and let G be the middle point of

the portion of KG intercepted within the trapezium. Then G
is the centre of gravity of the trapezium [On the equilibrium of

p/anes, I. 15].

Thus we may suppose tile trapezium suspended from K, and
the equilibrium will remain undisturbed.

Therefore

A 0 : OK = (trapezium CDEF) : P,

and, by hypothesis,

AO : OH= (trapezium CDEF) : Q.

Since OK < OH, it follows that

P<Q.

Propo_tionl 12, 13.

If the trapezium CDEF be placed as in the last propositions,
except that CD is vertically below a paint L on OB instead of

being below O, and the trapezium is suspended from L, H,

suppose that Q, 1_ are areas such that

A 0 : 0It = (trapezium CDEF) : Q,

and A 0 : OL = (trapezium CDEF) : R.
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If tlwn an area P suspended from A keep the system iv
equilibrium,

P > R b_t < Q.

Take the centre of gravity G of the trapezium, as in the
last propositions, an(] let the line through G parallel to DC
meet OB in K.

A 0 L K H B

° ] 2;-1 o
Then we may suppose the trapezium suspended from K,

and there will still be equilibrium.

Therefore (trapezium CDEF) : P -- AO : OK.

Hence

(trapezium CDEF) : P > (trapezium CDEF) : Q,

but < (trapezium CDEF) : R.

It follows that P < Q but > R.

Propositions 14, 15.

Let Qq be the base of any segment of a parabola. Then, It
two lines be drawn from Q, q, each parallel to the axis of the
parabola and on the same side of Qq as the segment is, either

(1) the angles so formed at Q, q are both right angles, or
(2) one is acute and the other obtuse. In the latter case let

the angle at q be the obtuse angle.

Divide Qq into any number of equal parts at the points

O1, 02,... 0_. Draw through q, 0_, 02.... 0_ diameters of the
parabola meeting the tangent at Q in E, El, E2, ... E, and the

parabola itself in q, R_, R2, ... Rn. Join QR,, QR_ .... QR_
meeting qE, O,E_, O_E2.... O___E,_, in F, F_, F_.... F___.

H.A. 16
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Let the diametem Eq, E_O_.... EnOn meet a straight fine
QOA drawn through Q perpendicular to the diameters in the

points 0,//1, H2 .... Itn respectively. (In the particular case
where Qq is itself perpendicular to the diameters q will coincide
with O, Oz with//1, and so on.)

It is required to prove that

(1) AEqQ< a(sumof trapezia FOz, F_02,... F___O, and A E,O_Q),

(2) A EqQ > 3 (sum of trapezia R_02,R_Os.... Rn-_ON and A R,,O,_Q).

A 0 H1 Hg. Ha-1 "Ha Q

o_/ 'yP' > _"
P2

F /
1 L-I
, /

P.+I l

/

E2

}
E

Suppose A O made equal to OQ, and conceive QOA as a

lever placed horizontally and supported at 0. Suppose the
triangle EqQ suspended from OQ in the position drawn, and
suppose that the trapezium EO_ in the position drawn is

balanced by an area P_ suspended from 2l, the trapezium E10_

in the position drawn is balanced by the area P, suspended
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from A, and so on, the triangle E,,O,,Q being in like manner
balanced by -P,,+,.

Then P_ + P. +... + P,,_, will balance the whole triangle
EqQ as drawn, and therefore

.P_+P2+...+P,,+I=}AEqQ. [Props. 6, 7]

Again A 0 : OHI = QO : OHl

= Qq : q 0,

= E10_ : 0_RI [by means of Prop. 5]

= (trapezium EO,) : (trapezium FO,) ;
whence [Props. 10, 11]

(FO,)> P,.
Next AO : 0t[_ = ElO, : O,_P_

= (E102) : (RIO,) .............. (a),

while AO : OH..= E20_ : Ofl'¢_

= (E,O._) : (F102) .............. 09) ;

and, since (a) and (_) arc simultaneously true, we have, by

ProDs. 12, 13,
(F,O,)> P, > (n,O,.,).

Similarly it may be proved that

(1;',0,)> P, > (t_0,),
and so on.

Lastly [Props. 8, 9]

A E,,O,,Q > P,,+, >/XR,,O,,Q.

By addition, we obtain

(1) (FO_)+(F,O_)+... +(F,,_IO,,)+ /x E,,O,,Q > PI + P: +... + P,,+,

> t ZXEqQ,

or AEqQ<a($'O,+F_O.,+... +F_O,,+AE,,O,Q).
(2) (P_O,)+(P_Os)+... +(R_O,O+ A.P_O,_Q<P,+ P,+... + P,+,

< P, + P, +... + P,+_, a fortiori,

< _ A EqQ,

or AE_Q>3(t_O,'+ R,O,+... + I_,_IO,,+AI_O,Q).
16--2
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Propolition 16.

Suppose Qq to be the base of a parabolic seg_wnt, q being
_wt more distant than Qfrom the vertex of the parabola. Draw

Oerough q the straight line qE parallel to the axis _f the parabola
to meet the tangent at Q in E. It is required to prove that

(area of segment) = ½/xEqQ.

For, if not, the area of the segment Iaust be either greater
or less than ½ AEqQ.

L Suppose the area of the o 1o_segment greater than ½ AEqQ. or_------_'<'T-"

Then the excess can, if con- ___/_.]_tinually added to itselt, be

made to exceed AEqQ. And / _m_;)it is possible to find a submui-

tiple of the triangle EqQ less _.//i//_,A_//
than the said excess of the y)Jsegment over _ A EqQ. / /

Let the triangleFqQ be such ///
a submultiple of the triangle / /
ETQ. Divide Eq into equal /
parts each equal to qF, and let /_dl the points of division in-

cluding F be joined to Q meet- e

ing the parabola in R_, R2 ....
R_ respectively. Through _R_,/_ .... R_ 'draw diameters of the
parabola meeting qQ in 0_, 02.... 0" respectively.

Let 0_R_ meet QR._ in F_.

Let 02R_ meet Qtl_ in D_ and QRs in F2.

Let 0_R: meet QR, in/)2 and QR, in Fs, and so on.

We have, by hypothesis,

A FqQ < (area of segment) - _ A EqQ,

or (area of segment) - AFqO, > _ aEqq ......... (a).
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Now, since all the parts of qE, as qF and the rest, are equal,

0__t_ = -P_F1,O_D_= D_R2 = _2, and so on ; therefore

AFqQ = (FO_ + R,O, + DIO, +...)

= (FO_ + F_D, + F,.D, +... +F,,_,D,,_1 + A E,,RnQ)...(B).
But

(area of segment) < (F01 + F_O=+ ... +F,_IO,_ +/xE,,OnQ).

Subtracting, we have

(area of segment)-/xFqQ < (t_0,_ + R_.O,+...
+ P___On +AR,,O,,Q),

whence, afortiori, by (a),

:_A EqQ < (R,O._+ R_O, + ... + Rn_,On + AI_O,,Q).

But this is impossible, since [Props. 14, 15]

IAEqQ>(R_O._,+ R_O_+...+Rn_,O,,+ AR,,O,,Q).

Therefore
(area of segment) :__AEqQ.

II. If possible, suppose the area of the segment less than

_ /XEqQ.

Take a submultiple of the triangle EqQ, a_ the triangle

FqQ, less than the excess of _AEqQ over the area of the
segment, and make the _ume construction as before.

Since AFqQ < ½AEqQ - (area of segment),
it follows that

A FqQ + (area of segment) < ½AEqQ

< (FO_ + F,O_ +... + F, HO,, + AL;,O,,Q).
[Props. 14, 15]

Subtracting from each side the area of the segment, we have

A FqQ < (sum of spaces qFR_, P_FIR._ .... E,,R,,Q)

< (FO, + F_D_+... + F_HD,,-_ + A E,,R,,Q), afortiori;

which is impossible, because, by (/9) above,

AFqQ = FO, + F,D, + ... + F,,_,D,,_, + AE,,R,,Q.

Hence (area of segment) _: _AEqQ.

Since then the area of the segment is neither less nor

greater than _AEqQ, it is equal to it.
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Proposition 17.

It is now manifest that the area of any segment of a
parabola is four-thirds of the triangle which has the same base
as the segn_nt and equal heigkt.

Let Q(/be the base of the segment, P its vertex. Then
PQq is the inscribed triangle with the

same base as the segment and equal / v__Q

height, q_Z /

Since JP is the vertex* of the seg- . 7
ment, the diameter through P bisects

Qq. Let V be the point of bisection.

Let VP, and qE drawn parallel to

it, meet the tangent at Q in T, E re- /
spectively. //

Then, by parallels, /

/qE = 2 VT,

and PV= PT, [Prop. 2]

so that VT = 2P V.

Hence A EqQ = 4/x pQq.

But, by Prop. 16, the area of the segment is equal to ½AEqQ.

Therefore (area of segment) -- ._A PQq.

DEF. "In segments bounded by a straight line and any
curve I call the straight line the _, and the height the

greatest perpendicular drawn from the curve to the base of the
segment, and the vertex the point from which the greatest

perpendicular is drawn."

• It is curious that Archimedes uses the terms base and vertex of a segment

here, but gives the definition of them latex (at the end of the proposition).
Moreover he assumes the converse of the property proved in Prop. 18.
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Propoattion 18.

If Qq be the base of a segment of a parabola, and V the
middle point of Qq, and if the diameter through V meet the

curve in P, then P is the vertex of the segment.

Q

Sl

For Qq is parallel to the tangent at P [Prop. 1]. Therefore,
of all the perpendiculars which can be drawn from points on the

segment to the base Qq, that from P is the greatest. Hence,
by the definition, P is the vertex of the segment.

Proposition 19.

If Qq be a c/wrd of a parabola bisected in V by the diameter
PV, and if RM be a diameter blsectiTtg QV i_ M, a_d RW
be the ordinate from R to PV, then

P V _ RM.
Q

q

For, by the property of the parabola,

PV : PW=QV _ : RW"

= 4R W I : R W _,

so that P V = ¢P W,

whence P V = _RM.
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Proposition SO.

If Qq be the base, and P the vertex, of a parabolic segment,
then the triangle PQq is greater than half the segment PQq.

For the chord Qq is parallel to the taaigent at P, and the
triangle PQq is half the parallelogram a

tbrmed by Qq, the tangent at P, and the / .-//_/'
diameters through Q, q.

Therefore the triangle PQq is greater

than half the segment.

Co_t. It follows that it is possible

to inscribe in the seg_ucnt a polygon such
that the segments left over are together

less than any assigned area. q

Proposition _ 1.

If Qq be the base, and P the vertex, of any parabolic

segment, and if R be the vertex of the segment cut o] by PQ,
then

ZXPQq = 8 a PRQ.

The diameter through R will bisect the chord PQ, and
tLerefore also QV, where PV is the

diameter bisecting Qq. Let the dia- Q

meter through/_ bisect/_Q in Y and _///_"_7
Q V in M. Join PM. nl__//_____j..

By Prop. 19,

PV = _RM. p
Also P V = 2 YM.

Therefore YM = 2R Y, r'_.'\ / _

and APQM = 2A PRQ.

Hence A PQ V = 4 A PRQ, q

and A pQq = 8 A PRQ.
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Also, if RW, the ordinate from R to PV, be produced to
meet the curve again in r,

RW=rW,

and the same proof shows that

APQq = 8APrq.

Proposition 2_.

If there be a series of areas A, B, C, D .... each of which is
four times the next i_ order, and if the largest, A, be equal to the

triangle PQq inscribed i_ a parabolic segment PQq and having
the same base with it and equal height, then

(A + B + C + 1) +...) < (area of seg_umt PQq).

For, sincc APQq = 8APRQ = 8APqr, where R, r are the
vertices of the segments cut off by PQ,

Pq, as in the last proposition, ff

A PQq = 4 (A PQR + A Pqr). R /

Therefore, since A I"Qq = A,

A PQR + A Pqr = B. P

In like manner we prove that the
triangles similarly inscribed in the re-

maining segments are together equal to
the area C, and so on.

Therefi)re A+B+C+D+... is equal to the area of a
certain inscribed polygon, and is therefore less than the area of

the segment.

Propomition 23.

Given a series of areas A, B, C, D .... Z, of which A is the
greatest, and each is equal to four times the next in order, then

A +B+ C+... +Z+_Z=_A.
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Take areas b, c, d, ... such that

b= _B,

c = _C,

d = _D, and so on.

Then, since b = _B,

and B = ;_A,

B+b =½A.

Similarly C' -_ c = lB.

Therefore

B+C+D+... +Z+b+c+d+ ... +z= _(A +B+C+...+ Y).

But b+c+d+...+y=½(B+g+D+...+Y).

I --1
A

B

Therefore, by subtraction,

B+G+ D+... + Z+z=_A

or A + B+C+... + Z+JZ=]A.
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IThe of this result is of
algebraieM equivalent course

1 + :_+ (¼)'_+ ... + (¼),H = ] _ _ (_.),H

= i--¼ •]

Proposition s4.

Every segment bounded by a parabola and a chord Qq
equal to fo_r-thir_ of the tmangle wh_h ]_ls the same base _
the segment a_d equal height.

Suppose K = _/x pQq,

where P is the vertex of the segment; and we have then to

prove that the area of the segment is
equal to K. Q

For, if the segment be not equal to
K, it must either be greater or les._. R

I. Suppose the area of the segment
greater than K. P

If then we inscribe in the segments
cut off by PQ, Pq triangles which have

the same base and equal height, i.e.
triangles _th the same vertices R, r as
those of the segments, and if in the

remaining segments we inscribe triangles in the ._me manner,
and so on, we shall finally have segments remaining whose sum

is less than the area by which the segment PQq exceeds K.

Therefore the polygon so formed must be greater than the
area K; which is impossible, since [Prop. 23]

A +B+C+... +Z<_A,

where A = A PQq.

Thus the area of the segruent cannot be greater than K.

II. Suppose, if possible, that the area of the segment is
less than K.
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If then APQq=A, B=_A, C=_B, and so on, until we
arrive at an area X such that X is less than the difference

between K and the segment, we have

A +B+C+... +X +½X=_A [Prop. 23]

=K.

Now, since K exceeds A + B + C+ ... + X by an area less
than X, and the area of the segment by an area greater than X,
it follows that

A + B + C+ ... + X > (the segment) :

which is impossible, by Prop. 22 above.

Hence the segment is not less than K.

Thus, since the segment is neither greater nor less than K,

(area of segment PQq) = K = _ A PQq.



ON FLOATING BODIES.

BOOK I.

Postulate 1.

"Let it be supposed that a fluid is of such a character that,

its parts lying evenly and being continuous, that part which _u
thl_st the less is driven along by that which is thrust thc

more; and that each of its parts is thrust by the fluid which is
above it in a perpendicular direction if the fluid be sunk in

anything and compressed by anything else."

Proposition 1.

If a surface be cut by a plane always passing through a

certain point, and if the section be always a circumference [of a
circle] whose centre is the aforesaid point, the surface is that of
a sphere.

For, if not, there will be some two lines dra_n from the

point to the surface which are not equal.

Suppose 0 to be the fixed point, and A, B to be two points
on the surface such that OA, OB are unequal. Let the surface

be cut by a plane passing through OA, 013. Then the section
is, by hypothesis, a circle whose centre is 0.

Thus OA = OB; which is contrary to the assumptiom
Therefore the surface cannot but be a sphere.
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Proposition _.

The surface of any fluid at rest is the surface of a .sThere

whose centre is the same as that of the earth.

Suppose the surface of the fluid cut by a plane through O,
the centre of the earth, in the curve ABCD.

ABCD shall be the circumference of a circle.

For, if not, some of the lines drawn from 0 to the curve

will be unequal. Take one of them, OB, such that OB is

greater than some of the lines from 0 to the curve and less
than othcrs. Draw a circle with OB as radius. Let it be EBF,

which will therefore fall partly within and partly without the
surface of the fluid.

E.II, p O DF

Draw 0GH making with OB an _mgle equal to tile angle

NOB, and meeting the surface in H and the circle in G. Draw
also in the plane an arc of a circle PQR with centre 0 and
within the fluid.

Then the parts of the fluid along PQR are uniform and
continuous, and the part PQ is compressed by the part between

it and AB, while the part QR is compressed by the part

between QR and BH. Therefore the parts along PQ, QR will
be unequally compressed, and the part which is compressed the
less will be set in motion by that which is compressed the
more.

Therefore there will not be rest; which is contrary to thc

hypothesis.

Hence the section of the surface will be the circumference

of a circle whose centre is O; and so will all other sections by
planes through O.

Therefore the surface is that of a sphere with centre 0.
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Proposition 3.

Of solids those which, size for size, are of e_ual weight w_th

a fluid will, if l_ down into the fluid, be imnwrsed so that they
do _wt pr_eet above the surface but do not sink lower.

If possible, let a certain solid EFHG of equal weight,
volume for volume, with the fluid remain immersed in it so

that part of it, EBCF, projects above the surface.

Draw through 0, the centre of the earth, and through the
solid a plane cutting the surface of the fluid in the circle
ABCD.

Conceive a pyramid with vertex 0 and base a parallelogram
at the surface of the fluid, such that it includes the immersed

portion of the _lid. Let this pyramid be cut by the plane of
ABCD in OL, OM. Also let a sphere within the fluid and
below GH be described with centre 0, and let the plane of
ABCD cut this sphere in PQR.

F

A 0 0

Conceive also another pyramid in the fluid with vertex O,

continuous with the former pyramid and equal and similar to
it. Let the pyramid so described be cut in OM, ON by the
plane of ABCD.

Lastly, let STUV be a part of the fluid within the second
pyramid equal and similar to the part BGHC of the solid, and
let Sir be at the surface of the fluid.

Then the pressures on _PQ, QR are unequal, that on PQ

being the greater. Hence the part at QR will be set in motion
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by that at PQ, and the fluid will not be at rest; which is
contrary to the hypothesis.

Therefore the solid will not stand out above the surface.

Nor will it sink further, because all the parts of the fluid
will be under the same pressure.

Proposition 4.

A solid lighter than a fluid will, if i_nmersed in it, not be

completely s_drmerged, but part of it wiU project above the
surface.

In this case, after the manner of the previous proposition,

we assume the solid, if possible, to be completely submerged and
the fluid to be at rest in that position, and we conceive (1) a

pyramid with its vertex at 0, the centre of the earth, including
the solid, (2) another pyramid continuous with the former and

equal and similar to it, with the same vertex 0, (3) a portion of
the fluid within this latter pyramid equal to the immersed solid
in the other pyramid, (4) a sphere with centre 0 whose surt_ce
is below the immersed solid and the part of the fluid in the

second pyramid corresponding thereto. We suppose a plane to
be drawn through the centre 0 cutting the surt_cc of the
fluid in the circle ABC, the solid in S, the first pyramid in OA,

OB, the second pyramid in OB, OC, the portion of the fluid in

the second pyramid in K, and the inner sphere in PQR.

Then the pressures on the parts of the fluid at PQ, QR are

unequal, since S is lighter than K. Hence there will not be
rest; which is contrary to the hypothesis.

B

o

Therefore the solid S cannot, in a eondigion of rest, be

eomplegely submerged.



O1_" FLOATING BODIES I. 257

Proposition 5.

Any solid lighter than a fluid will, if placed in the fluid,

be so far immersed that the weight of the solid will be equal to
the weight of the fluid displaced.

For let the solid be EGttF, and let BGttC be the portion

of it immersed when the fluid is at rest. As in Prop. 3,
conceive a pyramid with vertex 0 including the solid, and
another pyramid with the same vertex continuous with the

former and equal and similar to it. Suppose a portion of the
fluid STUV at the base of the second pyramid to be equal and

similar to the immersed portion of the solid ; and let the con-
struction be the same as in Prop. 3.

F

A O D

Then, since the pressure on the parts of the fluid at PQ, QR

must be equal in order that the fluid may be at rest, it follows

that the weight of the portion STUV of the fluid must be
equal to the weight of the solid EGHF. And the former is

equal to the weight of the fluid displaced by the immersed
portion of the solid BGIIC.

Proposition 6.

If a solid lighter than a fluid be forcibly immersed in it, the
solid will be driven upwards by a force equal to the difference

between its weight and the weight of the fluid displaced.

For let A be completely immersed in the fluid, and let G

represent the weight of A, and (G +//) the weight of an equal
volume of the fluid. Take a solid D, whose weight is H

H. ,. 17



258 ARCHIMEDES

and add it to A. Then the weight of (A+D) is less than

that of an equal volume of the fluid; and, if (A +D) is

immersed in the fluid, it will project so that its weight will
be equal to the weight of the fluid displaced. But its weight
is (G-_ H).

r--

Therefore the weight of the fluid displaced is (G + H), and
hence the volume of the fluid displaced is the volume of the

solid A. There will accordingly be rest with A immersed
and D projecting.

Thus the weight of D balances the upward force exerted by
the fluid on A, and therefore the latter force is equal to H,
which is the difference between the weight of A and the weight
of the fluid which A displaces.

Proposition 7.

A solid heavier than a fluid will, if placed in it, desce_wl
to the bottom of the fluid, and the solid will, when weighed
in the fluid, be lighter than its true weight by the weight of the
fluid displaced.

(1) The first part of the proposition is obvious, since the

part of the fluid under the solid will be under greater pressure,
and therefore the other parts will give way until the solid
reaches the bottom.

(2) Let A be a solid heavier than the same volume of the

fluid, and let (G + H) represent its weight, while G represents
the weight of the same volume of the fluid.
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Take a solid B lighter than the same volume of the fluid,
and such that the weight of B is G, while the weight of the
_me volume of the fluid is (G + H).

I °
Let A and _ be now combined into one solid and immersed.

Then, since (A + B) will be of the same weight as the same
volume of fluid, both weights being equal to (G +/-/)+ G, it
follows that (A +B) will remain stationary in the fluid.

Therefore the force which causes A by itself to sink must

be equal to the upward force exerted by the fluid on B by
itsel£ This latter is equal to the difference between (G+H)

and G [Prop. 6]. Hence A is depressed by a force equal to
H, i.e. its weight in the fluid is H, or the difference between
(G+H) and G.

[This proposition may, I think, _fely be regarded _s decisive
of the question how Archimedes determined the proportions of

gold and silver contained in the famous crown (cf. Introduction,
Chapter I.). The proposition suggests in fact the following
method.

Let W represent the weight of the crown, w_ and w_ the
weights of the gold and silver in it respectively, so that
W=wl+w...

(1) Take a weight W of pure gold and weigh it in a fluid.
The apparent loss of weight is then equal to the weight of
the fluid displaced. If F_ denote this weight, Fa is thus known

as the result of the operation of weighing.

It follows that the weight of fluid displaced by a weight w_

Wl . El.of gold is _r

17--2
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(2) Take a weight W of pure silver and perform the same

operation. If F2 be the loss of weight when the silver is
weighed in the fluid, we find in like manner that the weight

W2

of fluid displaced by w_ is W" F....

(3) Lastly, weigh the crown itself in the fluid, and let F be

the loss of weight. Therefore the weight of fluid displaced by
the crown is F.

w2 w2 _,..=It foilows that W" F1+ ]_. F,

or WlF1 + w._F2= (wl + w2)F,

whence w_ F2-F
wG= :#---71"

This procedure colTesponds pretty closely to that described
in the poem de ponderibus et mensuris (written probably about

500 A.D.)" purporting to explain Archimedes' method. Ac-
cording to the author of this poem, we first take two equal

weights of pure gold and pure silver respectively and weigh
them against each other when both immersed in water; this

gives the relation between their weight_ in water and therefore
between their loss of weight in water. Next we take the
mixture of gold and silver and an equal weight of pure silver

and weigh them against each other in water in the same
manner.

The ether version of the method used by Archimedes is

that given by Vitruviust, according to which he measured
successively the volumes of fluid displaced by three equal

weights, (1) the crown, (2) the same weight of gold, (3) the

same weight of silver, respectively. Thus, if as before the
weight of the crown is W, and it contains weights wl and w_ of

gold and silver respectively,

(1) the crown displaces a certain quantity of fluid, V say.

(2) the weight W of gold displaces a certain volume of

• ToreUi's Archimedes, p. 364; Hultsch, Metrol. Script. _. 95 sq., and

Prolegomena § 118.
t De architect, xx. 3.
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fluid, V_ say ; therefore a weight wl of gold displaces a volume
Wl

]42.VI of fluid.

(3) the weight W of silver displaces a certain volume of
fluid, say V,.,; therefore a weight w_ of silver displaces a volume
W2

w.V_ of fluid.

It follows that V= Wl v w._w., _+-w.v_,

whence, since W-- w_ + w2,

w, V_- V
w,_ V- V1'

and this ratio is obviously equal to that before obtained, viz.
F,,-F

T-=- .]
Postulate 2.

"Let it be granted that bodies which arc forced upwards in
a fluid are forced upwards along the perpendicular [to the

surface] which passes through their centre of gravity."

Proposition 8.

If a solid i_ the form of a segment of a sphere, and of a

substance lighter than a fluid, be immersed in_ it so that its base
does not touch the surface, the solid will rest in such a positio_
that its axis is perpendicular to the surface ; and, if the solid be

forced into such (_ po,_tion that its base touches the fluid on one
side and be then set free, it will not remain in that position but
will return to the symmetrical position.

[The proof of this proposition is wanting in the Latin

version of Tartaglia. Commaudinus supplied a proof of his
own in his edition.]

Proposition 9.

If a solid in the form of a segment of a sphere, and of a
s_dostance lighter than a fluid, be immersed in it so that its base

is completely below the surface, the solid will rest in such a
position that its axis is perpendicular to the surface.
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[The proof of this proposition has only survived in a
mutilated form. It deals moreover with only one case out of

three which are distinguished at the beginning, viz. that in
which the segment is greater than a hemisphere, while figures
only are given for the cases where the segment is equal to, or
less than, a hemisphere.]

Suppose, first, that the segment is greater than a hemisphere.
Let it be cut by a plane through its axis and the centre of the
earth; and, if possible, let it be at rest in the position shown

in the figure, where AB is the intersection of the plane with
the base of the segment, DE its axis, C the centre of the

sphere of which the segment is a part, 0 the centre of the
earth.

O

O

The centre of gravity of the portion of the segment outside
the fluid, as F, lies on OC produced, its axis passing through C.

Let G be the centre of gravity of the segment. Join FG,

and produce it to H so that

FG : GH = (volume of immersed portion) : (rest of solid).
Join OH.

Then the weight of the portion of the solid outside the fluid
acts along FO, and the pressure.of the fluid on the immersed

portion along OH, while the weight of the immersed portion

acts along HO and is by h)Tothesis less than the pressure of
the fluid acting along OH.

Hence there will not be equilibrium, but the part of the
segment towards A will ascend and the part towards B descend,
until /)E assumes a position perpendicular to the surface of
the fluid.



ON FLOATING BODIES.

BOOK II.

Propolltion 1.

If a solid lighter thau a florid be at rest in ,it, the weight of

the solid will be to that of the same volume of the fluid as the
immersed portion of the solid is to the whole.

Let (A +B) be the solid, B the portion immersed in the
fluid.

Let (C + D) be an equal volume of the fluid, C being equal
in volume to A and B to D.

Further suppose the line E to represent the weight of the
solid (A + B), (F + G) to represent the weight of (C + D), and
G that of D.

E

A F

B

Q

Then

weight of(A +B) : weight of (C+D)=E:(F+ G)...(1).
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And the weight of (A +B) is equal to the weight of a
volume B of the fluid [I. 5], i.e. to the weight of D.

That is to say, E = G.

Hence, by (1),

weight of (A + B) : weight of (C + D) = G : F+ G

=D:C+D

=B:A+B.

Proposition 2.

If a right segment of a paraboloid of revolution whose axis is
not greater than _ p (where p is the principal parameter of the
generating parabola), and whose specific gravity is less than that

of a fluid, be placed in the fluid with its axis inclined to the
vertical at any angle, but so that the base of the segment does mot

to_lch the surface of the fluid, the segment of the paraboloid will
not remain in that position but will return to the position i,
which its axis is vertical.

Let the axis of the segment of the paraboloid be A_Y, and

through AN draw a plane perpendicular to the suri_ace of the
fluid. Let the plane intersect the paraboloid in the parabola
BAB', the base of the segment of the paraboloid in BB', and

the plane of the surface of the fluid in the chord QQ' of the

parabola.

Then, since the axis AN is placed in a position not perpen-
dicular to QQ', BB' will not be parallel to QQ'.

Draw the tangent PT to the parabola which is parallel to

QQ', and let P be the point of contact ".

[From P draw /_V parallel to AN meeting QQ' in V.
Then PV will be a diameter of the parabola, and also the

axis of the portion of the paraboloid immersed in the fluid.

• Therest of the proof is wantingin the versionof Tartaglia,but isgiven
in bracketsas suppliedby Commandinus.
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Let C be the centre of gravity of the paraboloid BAB', and
F that of the portion immersed in the fluid. Join FC and

produce it to H so that H is the centre of gravity of the
remafi_ing portion of the paraboloid above the surface.

S p

I. PKM T

Then, since AN = _A6'*,

and AN :_ _ p,

it follows that AC _ _.

Therefore, if CP be joined, the angle CPT is aeuteq'.
Hence, if CK be drawn perpendicular to PT, K will fall between
P and T. And, if FL, HM be drawn parallel to CK to meet

PT, they will each be perpendicular to the surface of the fluid.

Now the force acting on the immersed portion of the
seg_nent of the paraboloid will act upwards along LF, while
the weight of the portion outside the fluid will act downwards

along HM.

Therefore there will not be equilibrium, but the segment

As the determination of the centre of gravity of a segment of a paraboloid

which is here assumed does not appear in any extant work of Archimedes, or

in any known work by any other Greek mathematician, it appears probable that
it was investigated by Archimedes himself in some treatise now lost.

.+ The truth of this statement is easily proved from the property of the sub-

normal. For, ff the normal at P meet the axis in G, AG is greater than p2

except in the case where the normal is the normal at the vertex A itself. But
the latter case is excluded here because, by hypothesis, AN is not placed vertically.
Hence, P being a different point from ,_, AG is always greater than AC; and,
since the angle TPG is right, the angle TPC must be acute.
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will turn so that B will rise and B' will fall, until AN takes

the vertical position_]

[For purposes of comparison the trigonometrical equivalent
of this and other propositions will be appended.

Suppose that the angle NT.P, at which in the above figure
the axis AN is inclined to the surface of the fluid, is denoted

by 0.

Then the coordinates of P referred to AN and the tangent
at A as axes are

P--4 c°t_ 0, 2i cot 0,

where p is the principal parameter.

Suppose that AN = h, PV= k.

If now x' be the distance from T of the orthogonal projection
of F on TP, and x the corresponding distance for the point C,
we have

'-P 0. cosO+ pcotO.sinO 2k 0,x-_cot _ +3 cos

x = p coye. cose + _h cose,
O

whence x' - x = cos 0 (cot' 0 + 2) - ,_(h - k) .

In order that the segment of the pamboloid may turn in
the direcUon of increasing the angle .PTZ r, x' must be greater

than x, or the expression just found must be positive.

This will always be the case, whatever be the value of O, if

p. 2h
_ 7'

or h _,_p.]

Proposition _.

If a right segment of a paraboloid of revolution whose axis

is not greater than _p (where p is the parameter), and whose
s2)e_fie gravity is less than that of a fluid, be placed in the fluid

with its axis inclined at any angle to the vertical, but so that its
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base is entirely submerged, the solid will not remain in that posi-
tion but will return to the position in which the avis is vertical.

Let the axis of the paraboloid be AN, and through AN
draw a plane perpendicular to the surface of the fluid inter-
secting the paraboloid in the parabola BAB', the base of the

segment in B1VB', and the plane of the surface of the fluid in
the chord QQ' of the parabola.

T MKPL

B

Then, since AN, as placed, is not perpendicular to the
surfkce of the fluid, QQ' and BB' will not be parallel.

Draw -PT parallel to QQ' and touching the parabola at P.
Let PT meet NA produced in T. Draw the diameter P V

bisecting QQ' in IT. PV is then the axis of the portion of the
paraboloid above the surface of the fluid.

Let C be the centre of gravity of the whole segment of the
paraboloid, F that of the portion above the surtkce. Join F(/

and produce it to H so that H is the centre of gravity of
thc immersed portion.

Then, since AC :_ P, the angle CPT is an acute angle, as in

the last proposition.

Hence, if CK be drawn perpendicular to PT, K will fall

between P and T. Also, if IIM, FL be drawn parallel to CA',
they will be perpendicular to the surface of the fluid.

And the force acting on the submerged portion will act
upwards along HM, while the weight of the rest will act
downwards along LF produced.

Thus the paraboloid will turn until it takes the position
in which AIV is vertical.
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Proposition 4.

Given a right segment of a paraboloid of revolution whose
axis AN is greater than _p (where p is the parameter), and
whose specific gravity is less than that of a fluid but bears
to it a ratio not less than (AN-_p)_ : AN _, if the segment

of the paraboloid be placed in the fluid with its axis at any
inclination to the vertical, but so that its base does not touch

the surface of the fluid, it will not remain in that position but
will return to the position in which its axis is vertical.

Let the axis of the segment of the paraboloid be AN, and
let a plane be drawn through AN perpendicular to the surface

of the fluid and intersecting the segment in the parabola BAB',
the base of the segment in BB', and the surface of the fluid in
the chord QQ' of the parabola.

B/

K(o

PT

Then AN, as placed, will not be perpendicular to QQ'.

Draw PT parMlel to QQ' and touching the parabola at P.

Draw the diameter .P V bisecting QQ' in K Thus P V will be

the axis of the submerged portion of the solid.

Let C be the centre of gravity of the whole solid, F that of
the immersed portion. Join FC and produce it to H so that H

is the centre of gravity of the remaining portion.

Now, since AN = _A C,

and AN > _p,

it follows that AC >P.
Z
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Measure CO along CA equal to P, and OR along OC equal to

½AO.
Then, since AN = {AC,

and AR = _A O,

we have, by subtraction,
IVR = _OC.

That is, AZ r - AR = ._OC

--_p,

or AR = (AN - _p).

Thus (AIV--_p)'_ : A_V'_= AR' : AN 2,

and therefore the ratio of the specific gravity of the solid to
that of the fired is, by the enunciation, not less than the ratio
AR t : A.¥ 2.

But, by Prop. 1, the former ratio is equal to the ratio
of the immersed portion to the whole solid, i.e. to the ratio

PV _ : AN 2 [On Conoids and Spheroids, Prop. 24].

Hence PV _ : AI_'_; AR _ : AN'-,

or P V _. AR.
It follows that

PF (= _P V) ¢. _AR

¢.AO.
If, therefore, OK be drawn from 0 perpendicular to OA, it will
meet PF between P and F.

Also, if CK be joined, the triangle KCO is equal and similar
to the triangle formed by the normal, the subnormal and the

ordinate at P (since CO = _p or the subnormal, and KO is
equal to the ordinate).

Therefore CK is parallel to the normal at P, and therefore

perpendicular to the tangent at P and to the surface of the
fluid.

Hence, if parallels to CK be drawn through F, H, they will
be perpendicular to the surface of the fluid, and the force

acting on the submerged portion of the solid will act upwards

along the former, while the weight of the other portion will
act downwards along the latter.
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Therefore the solid will not remain in its position but will

turn until A_¥ assumes a vertical position.

[Using the same notation as before (note folloMng Prop. 2),
we have

x' - x = cos 0 (cot _0 + 2) -

and the minimum value of the expression within the bracket,
for different values of O, is

P 2 (h_ k) '2 3
7l"

corresponding to the position in which AM is vertical, or 0 = _.

Therefore there will be stable equilibrium in that position only,

provided that
k ¢ (h - _p),

or, if s be the ratio of the specific gravity of the solid to that of
the fluid (= _/h" in this ease),

s _. (h - _p)_/h'.]

Proposition 5.

Given a right segment of a paraboloid of revolution such that

its axis AN is greater than _p (where p is the parameter), and
its specific gravity is less than that of a fluid but in a ratio to

it not greater than the ratio {AN _- (AN-_p)_} :A_, if the
segment be placed in the fluid with its axis inclined at any angle

to the vertical, but so that its base is completely submerged, it will
not remain in that position but will return to the position in
which A2_ is vertical.

Let a plane be drawn through AN, as placed, perpendicular

to the surface of the fluid and cutting the segment of the
paraboloid in the parabola BAB', the base of the segment in
BB', and the plane of the surface of the fluid in the chord
QQ' of the parabola.

Draw the tangent PT parallel to QQ', and the diameter

PV, bisecting QQ', will accordingly be the axis of the portion
of the paraboloid above the surface of the fluid.
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Let F be the centre of gravity of the portion above the
surface, C that of the whole solid, and produce FC to H, the
centre of gravity of the immersed portion.

As in the last proposition, AC > P, and we measure CO along

CA equal to P, and OR along OC equal to ½AO.

Then AN= _A C, and AR = ,_AO ;

and we derive, as before,

A R = (A N - _p).

Now, by hypothesis,

(spec. gravity of solid) :(spcc. _avity of fluid)

IA_T_- (A_¥- _p)'}: A_V'
:_ (A.N" - AR2) : AN'.

T P'

A-\

° !i
[3

Therefore

(portion submerged) : (whole solid)

_,(AN' - AR') : A_¥',
and (whole solid) : (portion above surface)

AN' : AR 2.

Thus AN _ : PV _ :_ AN" : AR',

whence P V 4: A R,

and .PF _. JAR

CaO.
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Therefore,ifa perpendiculartoAG be drawn from0,it_II

meet PF insome pointK betweenP and F.

And, sinceCO = _p,CK willbe perpendiculartoPT, asin

the lastproposition.

Now theforceactingon the submergedportionofthe solid

will act upwards through H, and the weight of the other

portion downwards through F, in directions parallel in both
cases to CK; whence the proposition follows.

Propomition 6.

If a right segment of a paraboloid lighter than a fltdd be

such that its axis AM is grea_er than _p, but AM : ½p < 15 : 4,
and if the segment be placed in the fluid with its axis so i_clined
to the vertical that its base touches the fluid, it will never remain

in such a position that the base touches the surface in one point
only.

Suppose the segment of the paraboloid to be placed in the

position described, and let the plane through the axis AM
perpendicular to the surface of the fluid intersect the segment
of the paraboloid in the parabolic segment BAB' and the plane
of _he surface of the fluid in BQ.

Take C on AM such that AC= 2CM (or so that C is the

centre of gravity of the segment of the paraboloxd), and measure
CK along CA such that

AM: CK= 15 : 4.

i

,, __--'_7/ _

Be --

P T

Thus AM •CK > AM : ½p, by hypothesis; therefore CK < ½p.
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Measure CO along CA equal to ½p. Also draw KR per-
pendicular to A C meeting the parabola in /_.

Draw the tangent PT parallel to BQ, and through P draw

the diameter PV bisecting BQ in V and meeting KR in/.

Then PV : PIor > KM : AK,
"for this is proved.""

And CK = hAM = ]AC;

whence AK = AC- CK = _AC =]AM.

Thus KM = _AIK

Therefore KM = _AK.

It follows that

ev 07>pr,

so that P/or< 2IK

Let F be the centre of gravity of the immersed portion of
the paraboloid, so that PF= 2FV. Produce FC to H, the

centre of gravity of the portion above the surface.

Draw OL perpendicular to PV.

• We have no hint as to the work in which the proof of tiffs propomtion was

contained. The following proof is shorter than Robertson's (m the Appendix
to Torelh's edition).

Let BQ meet AM in U, and let PN be the ordinate from P to AM.

We have to provc that PV. AKoT> PI.KM, or in other words that

(PV. AK- PI. KM) is positive or zero.

Now PV. AK - PI. KM= AK. PV- (AK- AN) (AM - AK)

= AK_-- AK (AM + AN- PIO + AM. AN

=AK2-AK. UM+AM. AN,
(since AN = A2_.

Now UM : BM=NT : PN.

Therefore UM _ :p. AM=4AN _ : p. AN,

whence UM_= 4AM. AN,
UM _

or AM.AN=----_ .
UM'_

Therefore PV. AK-PI.KM=AK2-AK. UM+ 4

and accordingly (PV. AK - PI. KM) cannot be negative.

n.A. 18
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Then, since CO =-_-p, C,L must be perpendicular to PT and
therefore to the surface of the fluid.

And the forces acting on the immersed portion of the

paraboloid and the portion above the surface act respectively
upwards and downwards along lines through F and H parallel
to CL.

Hence the paraboloid cannot remain in the position in which
B just touches the surface, but must turn in the direction of
increasing the angle PTM.

The proof is the _me in the case where the point I is not
on VP but on VP produced, as in the second figure t.

Bt

B

t.

[With the notation used on p. 266, if the base BB' touch
the surface of the fluid at B, be have

BM = B V sin 0 + PA r,

and, by the property of the parabola,

.13V _= (p + 4AN) P V

=pk (1 + cot' 0).

Therefore _/ph = _/p-k +P cot 0.

To obtain the result of the proposition, we have to eliminate

k between this equation and

x' - x = cos0 (cot' 0 + 2)- g ( h - k) .
" It is curious that the figures given by Torelli, Nizze and Helberg are all

incorrect, aa they all make the point which I have called I lie on BQ instead of
VP produced.
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We have, from the first equation,

k = h - _/_ cot O+ P cot_ O,

or h- k= 4_ cote - p cot'0.
Therefore

f¢t
- x =cos0 _4(cot'0+ 2)-

= cos O {P (_ cot' O + 2 ) - _ _/_, cot 8} .

If then the solid can never rest in the position described,

but must turn in the direction of increasing the angle PTM,
the expression within the bracket must be positive whatever
be the value of 8.

Therefore (_)' ph < _p_,

or h < _p.]

Proposition 7.

Given, a right segment of a paraboloid of revolution lighter

than a fluid and suvh that its axis AM is greater than _ p, but
AM : ½p< 15 : 4,/f the segment be placed in the fluid so that

its base is entirely submerged, it will never rest in ,_wh a position
that the base touches the surface of the fl_id at one point only.

Suppose the solid so placed that one point of the base

only (B) touches the surface of the fluid. Let the plane
through B and the axis AM cut the solid in the parabolic

segment BAB' and the plane of the surface of the fluid in the
chord BQ of the parabola.

Let C be the centre of gravity of the segment, so that

A C = 2CM ; and measure CK along CA such that

AM:CK=IS:4.

It follows that CK < ½p.

Measure CO along CA equal to ½p. Draw KR perpen-

dicular to AM meeting the parabola in/_.
18--2
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Let PT, touching at P, be the tangent to the parabola
which is parallel to BQ, and PV the diameter bisecting BQ, i.e.
the axis of the portion of the paraboloid above the surface.

R

Q, _B

Then, as in the last proposition, we prove that

p v or> PI,

and P1 or< 2IV.

Let F be the centre of gravity of the portion of the solid
above the surface ; join FC and produce it to H, the centre of

gravity of the portion submerged.

Draw OL perpendicular to _PV; and, a_ before, since
CO = ½p, CL is perpendicular to the tangent PT. And the

lines through H, F parallel to CL are perpendicular to the
surface of the fluid; thus the proposition is established as
beibre.

The proof is the same if the point I is not on VP but on
VP produced.

Proposition 8.

Given a solid in the form of a ri#ht se#men_ of a paraboloid

of revolution whose axis AM is greater than _p, but such that
AM : ½p < 15 : 4, and whose specific gravity bears to that of a
fluid a ratio less than (AM-_p)g : AM _, then, if the solid be

placed in the fluid so that its base does not touch the fluid and
its axis is inclined at an angle to the vertical, the solid will not
return to the position in which its axis is vertical and wilt not
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remain in any position except that in which its axis makes with

the surface of the fluid a certain angle to be descmToed.

Let am be taken equal to the axis AM, and let c be a point

on am such that av = 2cm. Measure co along ca equal to ½p,
and or along oc equal to ½ao.

,l

A
a b _ " mYC

B t

1_ B M H i

P T

Let X + Y be a straight line such that

(spec. gr. of solid) : (spce. gr. of fluid) = (X + Y)_ : am 2...... (=),

and suppose X = 2 Y.

Now ar = _ ao = _ (_ am - _ p)

---.am-a_ p

=AM-_p.

Therefore, by hypothesis,

(X + Y)_ : am _< ar 2 : am =,

whence (X + Y) < ar, and therefore X < ao.

Measure ob along oa equal to X, and draw bd perpendicular
to ab and of such length that

bd _= _ co. ab ........................ (/3).
Join ad.

Now let the solid be placed in the fluid with its axis AM

inclined at an angle to the vertical. Thl"ough AM draw a

plane perpendicular to the surface of the fluid, and let this
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plane cut the paraboloid in the parabola BAB" and the plane
of the surface of the fluid in the chord QQ' of the parabola.

Draw the tangent PT parallel to Q_', touching at _, and
let PV be the diameter bisecting QQ' in V (or the axis of the

immersed portion of the solid), and p_r the ordinate from P.

Measure AO along AM equal to ao, and OC along OM
equal to oc, and draw OL perpcndieular to PV.

I. Suppose thc angle OTP greater than the angle dab.

Thus PN* : .NT' > db* : ba*.

But PN* : NT2=p : 4AN

= co : NT,

and db*: ba*=½co :ab, by (B).

Therefore 2YTT< 2ab,

or AN< ab,

whence NO > bo (since ao= A O)

>X.

Now (X + Y)' : am* = (spec. gr. of solid) : (spec. gr. of fluid)

= (portion immersed) : (rest of solid)

= PV* : AM*,

so that X + Y= P V.

But P.L (= NO) > X

> _(X + Y), since X = 2 Y,

>_PV,
or lP V< _PL,

and therefore PL > 2L V.

Take a point F on .PV so that P.F= 2FV, i.e. so that F is
the centre of gravity of the immersed portion of the solid.

Also AC= ac = _am= _AM, and therefore C is the centre

of gravity of the whole solid.

Join FG and produce it to H, the centre of gravity of the

portion of the solid above the surface.
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Now, since CO = ½p, CL is perpendicular to the surface of

the fluid ; therefore so are the parallels to CL through F and

H. But the force on the immersed portion acts upwards
through F and that on the rest of the solid downwards
through H.

Therefore the solid will not rest but turn in the direction of

diminishing the angle MTP.

II. Suppose the angle OTP less than the angle dab. In
this case, we shall have, instead of the above results, the

following,
AN> ab,

NO< X.

Also PV> _PL,

and therefore PL < 2L V.

B !

M H _Q,
B

P T

Make PF equal to 2FV, so that F is the centre of gravity
of the immersed portion.

And, proceeding as before, we prove in this case that the

solid will turn in the direction of increasing the angle MTP.

III. When the angle MTP is equal to the angle dab,

equalities replace inequalities in the results obtained, and L is
itself the centre of gravity of thc immersed portion. Thus all
the forces act in one straight line, the perpendicular CL;

therefore there is equilibrium, and the solid will rest in the

position described.
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[With the notation before used

x'-x=cosO {P (cot'O+ 2)-2 (h-k)},

and a position of equilibrium is obtained by equating to zero the

expression within the bracket. We have then

2
(h - k) - pP cot_ 3

0

It is easy to verify that the angle 0 satisfying this equation

is the identical angle determined by Archimedes. For, in the
above proposition,

--X2=pV--k

2 p 2 2
- =_(h-k)- p.whence ab--_h-_ _k

Also bd _= P . ab.
It follows that

4

Proposition 9.

Given a solid in the form of a right segment of a paraboloid

of revolution whose axis AM is greater than _ p, but such tlwtt
AM : ½p < 15 : 4, and whose specific gravity bears to that of a

fluid a ratio greater than {AM'-(AM-_ p)" I : AM', then, if
the solid be placed in the fluid with its axis inclined at an angle
to the vertical but so that its base is entirely below the surface,

the solid will not return to the position in which its axis is
vertical and will not remain in any Tosition except that in which

its axis makes with the surface of the fluid an angle equal to that
described in the last proposition.

Take am equal to AM, and take c on am such that ac = 2cm.
Measure co along ca equal to ½p, and ar along ac such that

ar = _ao.
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Let X + Y be such a line that

(spec. gr. of solid) : (spec. gr. of fluid)= {amt-(X + Y)'} : am',

and suppose X = 2 Y.
d

A
ab " " _.,

8

.NOW ar = _ao

= _(_a,_- ½p)
=AM-_p.

Therefore, by hypothesis,

am _- at2: am_ < {am _- (X + Y)'} : am',

whence X + Y < at,

and therefore X < ao.

Make ob (measured along oa) equal to X, and draw bd
perpendicular to ba and of such length that

bd" = ½co. ab.
Join ad.

Now suppose the solid placed as in the figure with its axis
AM inclined to the vertical. Let the plane through AM

perpendicular to the surface of the fluid cut the solid in the

parabola BAB' and the surface of the fluid in QQ'.

Let PT be the tangent parallel to QQ', P V the diameter

bisecting QQ' (or the axis of the portion of the paraboloid above
the surface),/__}V the ordinate from P.
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I. Suppose the angle MT.P greater than the angle dab.
Let AM be cut as before in C and 0 so that AC=2CM,

OC=_p, and accordingly AM, am are equally divided. Draw
OL perpendicular to _PV.

Then, we have, as in the last proposition,

PN _ : NT" > db' : ba',

whence co : NT>_co : ab,

and therefore AN < ab.

It follows that NO > bo

>X.

Again, since the specific gravity of the solid is to that of
the fluid as the immersed portion of the solid to the whole,

AM'-(X + Y)" : AM _=A$P-PV' : AM',

or (X+ Y)' : AM_=PV ' : AM _.

That is, X + Y= P V.

And PL (or NO) > X

>_PV,
so that PL > 2L 17.

Take F on PV so that PF= 2FV. Then F is the centre

of gravity of the portion of the solid above the surface.

Also C is the centre of gravity of the whole solid. Join FC

and produce it to H, the centre of gravity of the immersed
portion.

Then, since CO = ½p, CL is perpendicular to PT and to the
surface of the fluid; and the force acting on the immersed

portion of the solid acts upwards along the parallel to CL
through H, while the weight of the rest of the solid acts down-

wards along the parallel to CL through F.

Hence the solid will not rest but turn in the direction of

diminishing the angle MTP.

II. Exactly as in the last proposition, we prove that, if the

angle MTP be less than the angle dab, the solid will not remain
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in its position but will turn in the direction of increasing the
angle MTP.

T P

B

III. If the angle MTP is equal to the angle dab, the solid
will rest in that position, because L and F will coincide, and all

the forces will act along the one line CL.

Proposition I0.

Given a solid in the .form of a right segment of a paraboloid
of revolution in which the axis AM is (f a length such that

AM: _p> IS: 4, and supposing the solid placed in a fluid
of greater specific gravity so that its base is entirely above the
surface of the fluid, to investigate the positions of rest.

(Preliminary.)

Suppose thc segment of the paraboloid to be cut by a plane

through its axis AM in the parabolic segment BAB1 of which
BB_ is the base.

Divide AM at C so that AC= 2CM, and measure CK along
CA so that

AM : CK= 15 : 4 ..................... (a),

whence, by the hypothesis, CK > ½p.

Suppose CO measured along CA equal to ½p, and take a
point R on AM such that MR = _CO.

Thus AR = AM- MR

= _ (A C - CO)

= _AO.
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Join BA, draw KA_ perpendicular to AM meeting BA in A_

bisect BA in A,, and draw A_M.,, A_M3 parallel to AM meeting
BM in M,_, 313 respeetivcly.

B MsM=D M B= St

2E

\

T

On A_M_, A 3M3as axes describe parabolic segments similar

to the segment BAB_. (It follows, by similar triangles, that
BM will be the base of the segment whose axis is A3Ms and
BB2 the base of that whose axis is A_M.,, where BB._ = 2BM_.)

The parabola BA._B2 will then pass through 6'.

[For BM_ : M_M = BM2 : A.K
= KM : AK

= CM + CK • AC - CK

= (:}+ _) AM : (_ - _) AM

= 9:6 ............................. (t_)
=MA :AC.
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Thus C is seen to be on the parabola BA._B._by the converse

of Prop. 4 of the Quadrature of the Parabola.]

Also, if a perpendicular to AM be drawn from 0, it will

meet the parabola BA_B._ in two points, as Q_,P2. Let Q1Q_QsD
be drawn through Q_ parallel to AM meeting the parabolas
BAB_, BA3M respectively in Q_, Q3 and BM in D; and let
P_P._P3 be the corresponding parallel to A M through Pv Let

the tangents to the outer parabola at P1, Q_meet ilia produced
in/'1, U respectively.

Then, since the three parabolic segments are similar and
similarly situated, with their bases in the same straight line

and having one common extremity, and since QIQ_Q3D is a
diameter common to all three segments, it follows that

QIQ_ : Q_Q_= (B:B, : B,B). (BM : MB._)'.

Now B_B_ : BIB = MM: : BM (dividing by 2)

= 2 : 5, by means of (/9) above.

And BM : MB._ = BM : (2BM_ - BM)

= 5 : (6 - 5), by means of (/9),
=5:1.

• This result is assumed without proof, no doubt as being an easy deduction
from Prop. 5 of the Quadrature of the Parabola. It may be established
as follows.

First, since AA2AaB is a straight hne, and AN=AT with the ordina D.
notation (where PT' is the tangent at P and PN the ordinate), it follows, by

s_milar triangles, that the tangent at B to the outer parabola is a tangent to
each of the other two parabolas at the same point B.

Now, by the proposition quoted, if DQ3Q.2Ql produced meet the tangent BT
in E,

.EQ3 : Q._D=BD : DM,

whence EQ_ : ED=BD : BM.
Similarly EQ2 E1)=BD : BB2,

and EQ_ IED=BD :BB 1.J
The first two proportions are equivalent to

EQs : ED= BD. BB 2 : BM. BB_,

and EQ2 : ED=BD.BM : BM.BB 2.
By subtraction,

Q_Q3 : ED =BD. MB 2 : BM. BB 2.

Similarly Q,Q_ : ED = BD . B_B, : BB 2 . BB,.
It follows that

Q1Q2 : Q_Q'J=(B_B1 : B1B). (BM : MB@.
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It follows that

Q_Q_: Q.,Qs= 2: 1,

or Q_Q_= 2Q,Q,. l
Similarly P_P, 2P_P 3.)

Also, since MR = _CO = _p,
AR = AM- MR

= AM--]p.
(Enunciation.)

If the segment of the paraboloid be placed iu the fluid with
its base entirely above the surface, then

(I.)/f

(spec. gr. of solid) : (spec. gr. of fluid) ¢, AR' : AM _

[¢. (AM- _p)': AM'],

the solid will rest in the position in which its axis AM ,isvertical;

(II.) g

(spec. gr. of solid): (spec. gr. of fluid)< AR _ : AM _

but > Q_Q/ : AM 2,

the solid will not rest _tfith its base touching the surface of the
fuid in one point only, but in such a position that its base does

not touch the surface at any point and its axis makes with the
surface an angle greater than U;

OILa)ff
(spec. gr. of solid) : (spec. gr. of fluid) = Q,Q_'_: Ai_P,

the solid will rest aTM remain in the position in which the base

touches the surface of the fluid at one point only and the axis
makes with the surface an angle equal to U ;

(III. b) _f

(spec. gr. of solid) : (spec. gr. of flaid) = P_P/ : AML
the solid will rest with its base touching the s_rface of the fl_tid

at one point only and with its axis inclined to the surface at an
a,udle equal to T],

(IV.) g

(spec. gr. of solid) : (spec. gr. of.fluid) > PzP; : AM"

but < Q,Q/ : AM',
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the solid will rest and remain in a position with its base more
submerged ;

(V.) V

(spec. gr. of solid) : (spec. gr. of fluid) < P1P_" : AM',

the solid will rest in a position in which its axis is inclined to the
surface of the fluid at an angle less than TI, but so that the base

does not even touch the surface at one point.

(Proof.)

(I.) Since AM> ip, and

(spec. gr. of solid) : (spec. gr. of fluid) _: (AM - a4p)2: AM _,

it follows, by Prop. 4, that the solid will be in stable equilibrium
with its axis vertical.

(II.) In this case

(spec. gr. of solid) : (spec. gr. of fluid)< AR _ : AM 2

but > Q_Q3_ : AM _.

B M B2 Bl

I
 \,ri /

Suppose the ratio of the specific gravities to be equal to

l _ : AM _,

so that 1 < AR but > Q_Qs.

Place P'V' between the two parabolas BAB1, BPsQ_M equal
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to 1 and parallel to AM°; and let P'V' meet the intermediate

parabola in F'.

Then, by the same proof as before, we obtain

P'F' ---2F'W.

Let P'T', the tangent at P' to the outer l_rabola, meet
MA in T', and let P'N' be the ordinate at P'.

Join B V' and produce it to meet the outer parabola in Q'.
Let OQ2P2meet P'V' in L

Now, since, in two similar and similarly situated parabolic

Archimedes does not give the solution of this problem, but it can be
supplied as follows.

Let BR1Q1, BRQ2 be two similar and similarly mtuated parabolic segments
with their bases in the same straight line, and let BE be the common tangent
atB.

R

R_Q 2

Suppose the problem solved, and let ERRzO, parallel to the axes, meet the
parabolas in R,/?a and BQ2 in O, making the intercept R/_l equal to l.

Then, we have, as usual,

ER 1 : ._;O_-BO : BQ1

-_BO. BQ2 : BQ1. BQ,,

and ER : EO---BO : BQ2

_-BO.BQ1 : BQ1.BQ_.
By subtraction,

RR 1 : EO=BO. Q1Q,: BQ1.BQ2,

or BO . OE =l .B--Q_:-_Q',whioh is known.

And the ratio BO : OE is known. Therefore B0 _, or OE2,can be found, and
therefore O.
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segments with bases BM, BB_ in the same straight line, BV', BQ'
are drawn making the same angle with the bases,

BV" : BQ' _- BM : BB,*

=1:2,
V! tso that B V' Q.

Suppose the segment of the paraboloid placed in the fluid,

as described, with its axis inclined at an angle to the vertical,
and with its base touching the surface at one point B only.

Let the solid be cut by a plane through the axis and per-

e _

M

o

p T

pendicular to the surface of the fluid, and let the plane intersect

the solid in the parabolic segmcnt BAB' and the plane of the
surface of the fluid in BQ.

Take the points G, 0 on AM as before described. Draw

To prove thzs, suppose that, in the figure on the oppomte page, BR x as
produced to meet the outer parabola in R2.

We have, as before,
.ER 1 : EO=.BO : BQ1 ,

ER : EO=BO : BQ_,

whence ER 1 : ER=BQ,, : BQI.

And, smoe R 1is a point within the outer parabola,

ER : ERI=Btl I : Bti2, in hke manner.

Hence BQ l : BQ2=Bfl I : BR_.

H.^. 19
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the tangentparallelto BQ touchingthe parabolain P and

meetingAM in T; and letPV be the diameterbisectingBQ

(i.e.the axisoftheimmersed portionofthe solid).

Then

:A3P= (spec.gr.ofsolid):(spec.gr.offluid)

= (portionimmersed):(wholesolid)

--P V_:A 3P,

whence P' W = l = P V.

Thus the segments in the two figures, namely BP'Q',
B.PQ, are equal and similar.

Therefore / PTN = z _P'T'N'.

Also AT=AT', AN=AN', PN=P'N'.

Now, in the first figure, P'I < 2IV'.

Therefore, if OL be perpendicular to PV in the second
figure,

PL < 2L V.

Take F on LV so that PF= 2'FV, i.e so that F is the centre

of gravity of the immersed portion of the solid. And C is the
centre of gravity of the whole solid. Join FC and produce it to
H, the centre of gravity of the portion above the surface.

Now, since CO = _p, CL is perpendicular to the tangent at
P and to the surface of the fluid. Thus, as before, we prove
that the solid will not rest with B touching the surface, but will
turn in the direction of increasing the angle PTN.

Hence, in the position of rest, the axis AM must make with

the surface of the fluid an angle greater than the angle U which
the tangent at Q1makes with AM.

(III. a) In this case

(spcc. gr. of solid) : (spec. gr. of fluid)= Q,Q3": AM'.

Let the segment of the paraboloid be placed in the fluid so
that its base nowhere touches the surface of the fluid, and its

axis is inclined at an angle to the vertical.
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Let thc plane through AM perpendicular to the surface of
the fluid cut the paraboloid in the parabola BAB' and the

BI

M

B H

Q 12 0

P T

B M 8., B_

TI

plane of the surface of the fluid in QQ'. Let PT be the tangent

parallel to QQ', PV the diameter bisecting QQ', PN the ordinate
at P.

Divide AM as before at C, O.
19--2
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In the other figure let Q,Zr' be the ordinate at Q_. Join
BQ8 and produce it to meet the outer parabola in q. Then
BQs = Q_, and the tangent Q_U is parallel to Bq. Now

Q_Q_ : AM*= (spec. _. of solid) : (spee. gr. of fluid)

= (portion immersed) : (whole solid)
= PV* : AM*.

Therefore Q_Qs= PV; and the segments QPQ', BQ_q of the

paraboloid are equal in volume. And the base of one passes
through B, while the base of the other passes through Q, a point
nearer to A than B is.

It follows that the angle between QQ" and BB' is less than
the angle B_Bq.

Therefore Z U < z PT:V,

whence A.¥' > AN,

and therefore -hr'O (or Q_Q_)< .PL,

where OL is perpendicular to PV.

It follows, since Q_Q_= 2Q2Q_, that

PL > 2LV.

Therefore F, the centre of gravity of the immersed portion
of the solid, is between P and L, while, as before, CL is perpen-
dicular to the surface of the fluid.

Producing FC to H, the centre of gravity of the portion of
the solid above the surface, we see that the solid must turn in

the direction of dirainishing the angle PTN until one point B
of the base just touches the surface of the fluid.

When this is the case, we shall have a segment BPQ equal

and similar to the segment BQtq, the angle PTN will be equal
to the angle U, and AN will be equal to AN'.

Hence in this ca_ PL -- 2LV, and F, L coincide, so that F,

C, H axe all in one vertical straight line.

Thus the paraboloid will remain in the position in which
one point B of the base touches the surface of the fluid, and the

axis makes with the surface an angle equal to U.
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(III. b) In the case where

(spec. gr. of solid) : (spec. gr. of fluid) = p_p2 : AM',

we can prove in the same way that, if the solid be placed in the
fluid so that its axis is inclined to the vertical and its base does

not anywhere touch the surface of the fluid, the solid will take

up and rest in the position in which one point only of the base
touches the surface, and the axis is inclined to it at an angle

equal to ]'1 (in the figure on p. 284).

(IV.) In this case

(spec. gr. of solid) : (_pec. gr. of fluid) > P1P_ : AM"

but < Q1Q2 : AM'.

Suppose the ratio to be equal to 1_: AM _,so that 1 is greater
than P, P3 but less than QIQ_.

Place P'V' between the parabolas BP_Q_, BP3Qs so that

P'V' is equal to 1 and parallel to AM, and let P'V' meet the
intcrmediate parabola in F' and OQ2P_ in/.

B M B._. B_

R V'

T_

Join B V' and produce it to meet the outer parabola in i/

Then, as before, BV'-- V'q, and accordingly the tangent

P'T' at P' is parallel to Bq. Let P'Z r' be the ordinate of _P'.
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1. Now let the segment be placed in the fluid, first, with
its axis so inclined to the vertical that its base does not

anywhere touch the surface of the fluid.

s'

P T

Let the plane through AM perpendicular to the surface of
the fluid cut the paraboloid m the parabola BAB' and the
plane of the surface of the fluid in QQ'. Let PT be the

tangent parallel to QQ', PV the diameter bisecting QQ'.
Divide AM at C, 0 as before, and draw OL perpendicular to P V.

Then, as before, we have _PV-- l = P'V'.

Thus the segments BP'q, QPQ' of the paraboloid are equal
in volume ; and it follows that the angle between QQ' and BB'

is less than the angle B1B_1.

Therefore Z P'T'N' < L PTN,

and hence AN" > AN,

sothat N0 > N'O,

i.e. PL > P'I

> P'F', a fortiori.

Thus PZ > 2LV, so that F, the centre of gravity of the

immersed portion of the solid, is between L and P, while CZ

is perpendicular to the surface of the fluid.
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If then we produce FC to H, the centre of gravity of the
portion of the solid above the surface, we prove that the solid

will not rest but turn in the direction of diminishing the
angle PTN.

2. Next let the paraboloid be so placed in the fluid that

its base touches the surface of the fluid at one point B only,
and let the construction proceed as before.

Then PV= P'V', and the segments BPQ. BP'q are equal
and similar, so that

L PTN'= z P'T'N'.

It follows that AN = A,¥', NO = N'O,

and therefore P'I = PL,

whence PL > 2L V.

B_

\

B

P •

Thus F again lies between P and L, and, as before, the

paraboloid will turn in the direction of diminishing the angle
PTN, i.e. so that the base will be more submerged.

(V.) In this case

(spec. gr. of solid) : (spcc. gr. of fluid) < P,P,_ : AIIP.

If then the ratio is equal to l' : AM', 1 < P1P,. Place P'V'
between the parabolas BPIQ_ _nd BP,Q, equal in length to 1
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and parallel to AM. Let P' V' meet the intermediate parabola
in F' and OP2 in I.

Join BV' and produce it to meet the outer parabola in q.

Then, as before, BV'= V'q, and the tangent P'T' is parallel

to Bq.
B M B: B,.

$

!i
1. Let the paraboloid be so placed in the fluid that its

base touches the surface at one point only.

B p

B

P T
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Let the plane through AM perpendicular to the surface
of the fluid cut the paraboloid in the parabolic section BAB'
and the plane of the surface of the fluid in BQ.

Making the usual construction, we find
PV=I= P'V',

and the segments BPQ, BP_q are equal and similar.

Therefore z PTN = / P'T'N',

and AN = AN', N'O = NO.

Therefore PL = P'I,

whence it follows that PL < 2L V.

Thus F, the centre of gravity of the immersed portion of the
solid, lies between L and V, while CL is perpendicular to the
surface of the fluid.

Producing FC to H, the centre of gravity of the portion
above the surface, we prove, as usual, that there will not be
rest, but the solid will turn in thc direction of increasing the
angle PTN, so that the base will not anywhere touch the
surface.

2. The solid will however rest in a position where its axis

makes with the surface of the fluid an angle less than T1.

B t

M

B v A

p T
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For let it be placed so that the angle PT_ is not less
than T_.

Then, with the same construction as before, PV= 1 = P'V'.

And, since L T _: L T1,

A_V$ AS;,
and therefore N0 _: _VlO, where P1/VI is the ordinate of P,.

Hence PL _; P_P...

But P,P_ > P'F'.

Therefore PL > _P V,

so that F, the centre of gravity of the immersed portion of
the solid, lies bctween P and L.

Thus the solid will turn in the direction of diminishing

the angle PTN until that angle becomes less than T_.

[As before, if x, x' be the distances from T of the orthogonal

projections of C, F respectively on TP, we have

x'-x---cosO (cot'0+ 2) - g (h - k) ....... (1),

where h = AM, k = PV.

AI_, if the base BB' touch the surface of the fluid at one

pdint B, we have further, as in the note following Prop. 6,

4_h-_,_ +_coto.....................(2),

and h - k = _/p-hcot 0 - _ cot _0 ............ (3).

Therefore, to find the relation between h and the angle B at

which the axis of the paraboloid is inclined to the surface of the

fluid in a position of equilibrium with B just touching the
surface, we eliminate k and equate the expression in (1) to
zero ; thus

(co , oo .0):o.
or 5p cot' 8 - 8,,/p-h cot B + 6p = 0 ............ (4).
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The two values of 6 are given by the equations

5 _/p cot 0 = 4_fh _+_/16h - 30p ............ (5).

The lower sign corresponds to the angle U, and the upper
sign to the angle T,, in the proposition of Archimedes, as can
be veHfied thus.

In the first figure of Archimedes (p. 284 above) we have

AK=V,

M2D _ = _p. OK = ,}p ({th - t h - ½p)

3p?__
=5 ,,5-_)

If P1P..,Ps meet BM in D', it follows that

MsD_
MsD'_ = M2D +_M..M.:_

/3p/4/, _p) + 1/_,

MD) MY
and MD" _ = i ..,_ Mo.D

=geph; i15-2,)"

_'ow, from the property of the parabola,

cot 5r= 2MD/p,

cot 2'1= 2MD'/p,

{u}=, -,0i.,or 5 _/p cot 71

which agrees with the result (5) above.

To find the corresponding ratio of the specific gravities, or

kJ/h ", we have to use equations (2) and (5) and to express k in
terms of h and p.
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Equation (2) gives, on the substitution in it of the value of
cot 0 contained in (5),

_/]_= _ - _ (¢ _h + _/i6h- 30p)

-- } _fh _ _ _/16h - 30p,

whence we obtain, by squaring,

k = _-_h - ]_p -T-_ _/h (16h - 30p) ......... (6).

The lower sig-a corresponds to the angle U and the upper to
the angle T,, and, in order to verify the results of Archimedes,
we have simply to show that the two values of k are equal to

Q, Qs, P,P_ respectively.

Now it is easily seen that

Q_Q_= h/2 - 3lD'/p + 2M, D'/p,

P_P3 = hi2 - MD"/p + 2M, D'_/p.

Therefore, using the values of MD, MD', M3D, MsD' above
found, we have

P_P,J=2+5 i5- -ff6-+5 7\15 2/

= _h - _aP + _ _/h (16h - 30p),

which are the values of k given in (6) above.]
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Proposition 1.

If two circles touch at A, and if BD, EF be parallel diameters
in them, ADF is a straigl_t line.

[The proof in the text only applies to the particular case
where the diameters are perpendicular to the radius to the

point of contact, but it is easily adapted to the more general
case by one small change only.]

Let O, C be the centres of the circles, and let OC be joined

and produced to A. Draw DH parallel to A 0 meeting 0F
in H.

A

sF

Then, since OH = CD = CA.

and OF = OA,

we have, by subtraction,
HF-- CO = DH.

Therefore / HDF = / HFD.
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Thus both the triangles CAD, HDF are isosceles, and the

third angles ACD, DHF in each are equal. Therefore the
equal angles in each are equal to one another, and

./ADC = L DFH.

Add to each the angle CDF, and it follows that

,/A DC + / CDF = l CDF + / DFH

= (two right angles).

Hence ADF is a straight line.

The same proof applies if the circles touch externally*.

Proposition _.

Let AB be the diameter of a semicircle, and let the tangents

to it at B and at any other point D on it meet in T. If now DE
be drawn perpe_dic_dar to AB, and if A T, DE meet in F,

DF = FE.

Produce AD to meet BT produced in H. Then the angle

ADB in the semicircle is right; therefore the angle BDH is
also right. And TB, TD are equal.

H

A E C

Theretbre T is the centre of the semicircle on BH as

diameter, which passes through /).

Hence HT = TB.

And, since DE, HB are parallel, it follows that DF-- FE.

Pappus assumes the result of this proposition in connexion with the

¢tp_ko¢ (p. 214, ed. Hultsch), and he proves it for the case whero the circles

touch externally (p. 840).
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Proponition 3.

Let P be any point oa a segment of a circle whose base is
AB, and let PN be perpendicular to AB. Take D on AB so

that AN = IVD. If now PQ be an arc equal to the arc PA, and
BQ be joined,

BQ, BD shall be equal '_.

Q

Join PA, PQ, PD, DQ.

* The segment in the figure of the Ms. appears to have been a semmircle,
though the proposition is equally true of any segment. But the case where the
segment is a semicircle brings the proposition into close connexion with a

proposition in Ptolemy's _Td),V a_vra_e_, I. 9 (p. 31, ed. Halma; cf. the repro-

duction in Cantor's Gesch. d. Mathemat_k, I. (1894), p. 389). Ptolemy's object is
to connect by an equation the lengths of the chord of an arc and the chord of half
the arc. Substantially his procedure is as follows. Suppose AP, PQ to be
equal arcs, AB the diameter through A ; and let A P, I'Q, A Q, PB, QB be joined.
Measure BD along BA equal to BQ. The perpendicular PIe is now drawn, and
it Is proved that PA =IeD, and AN= ND.

Then AN_½(BA-BD)=._ (BA- BQ)=½(BA-_,fB-A'2:AQ'_).

And, by similar triangles, AN : AP=AI _: AB.
Therefore APz = A B . A N

=._(A_ - J_'_ --AQ2).AB.

This gives AP in terms of AQ and the known diameter AB. If we divide by

AB 2 throughout, it is seen at once that the propomtion gives a geometrical
proof of the formula

• 20*

sm _ = ½(1- cosa).

The ease where the segment is a semicircle recalls also the method used by
Archimedes at the beginning of the second part of Prop. 8 of the Measurement

of a c_rcle. It is there proved that, in the figure above,

AB+ BQ : AQ=BP : PA,

or, if we divide the first two terms of the proposRion by AB,

(1+ cosa.)/sina=cet_.
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Then, since the arcs PA, PQ are equal,

PA = PQ.

But, since AN = ND, and the angles at N are right,

PA -- PD.

Therefore PQ = PD,

and / PQD = / PDQ.

Now, since A, P, Q, B are concyclic,

z PA D + / PQB -- (two light angles),

whence Z PDA + z PQB = (two right angles)

= z PDA + z PDB.

Therefore Z PQB -- z PDB ;

and, since the parts, the angles PQD, PDQ, are equal,

z BQD = z BDQ,

and BQ = BD.

Proposition 4.

If AB be the diameter of a semicircle and N any point on AB,
and if semicircles be described within the first semicircle and
having AN, BN as diameters respectively, the figure included

between the circwmferences of the three semicircles is "what

Archimedes called an Jp_VXo_* "; and its area is equal to the
circle on PN as diameter, where P2g is perpendicular to AB
aT_dmeets the original semicircle in P.

For AB' = AN' + NB _+ 2AN. _h'B

-- A N" + NB' + "2P3P.

But circles (or semicircles) are to one another as the squares of
their radii (or diameters).

* app,1),o_ is literally ' a ahoemaker's knife.' Cf. note attached to the remarks
on the Liber A,_umptorum in the Introduction, Chapter II.
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Hence

(semicircle on AB)= (sum of semicircles on AN, zrB)

+ 2 (semicircle on PN).

P

A _1 B

That is, the circle on P,'V as diameter is equal to the
difference between the semicircle on AB and the sum of the

semicircles on AN, NB, i.e. is equal to the area of the _O¢_Xo,.

Proposition 5.

Let AB be the diameter of a semicircle, C any point on AB,

and CD perpendicular to it, and let semicircles be described
within the first semicircle and having AC, CB as diameters.

The_, if two circles be drawn touching CD on differeT_t sides
and each toucMng two o/the semicircles, the circles so draw_

will be equal.

Let one of the circles touch CD at E, the semicircle on AB

in F, and the semicircle on A C in G.

Draw the diameter Eli of the circle, which will accordingly

be perpendicular to CD and thereibre parallel to AB

Join FH, HA, and FE, EB. Then, by Prop. 1, FHA, FEB

are both straight lines, since EH, AB are parallel.

For the same reason AGE, CGH are straight lines.

Let AF produced meet CD in D, and let AE produced
meet the outer semicircle in /. Join BI, ID.

H. -. 20
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Then, since the angles AFB, ACD are right, the straight
lines AD, AB are such that the perpendiculars on each from the

extremity of the other meet in the point E. Therefore, by the

properties of triangles, AE is perpendicular to the line joining
BtoD.

D

F !

J

, i

A C D

But AE is perpendicular to BL

Therefore BID is a straight line.

Now, since the angles at G, I are righl;, CH is parallel
to BD.

Therefore AB : BC = AD : DH

---AC: HE,

so that A C. CB = A B. HE.

In like manner, if d is the diameter of the other circle, we can

prove that AC. CB ---AB. d.

Therefore d = HE, and the circles are equal*.

• The property upon which this result depends, viz. that

AB : BC=AC : HE,

appears aa an intermediate step in a proposition of Pappus (p. 2/10, eel. Hultsch)
which proves that, in the figure above,

AB :BC=CE "_:HE 2.

The truth of the latter proposition is essily seen. For, sines the angle CEH

is a right angle, and EG is perpendicular to CH,
CE _ : EH_-= CG : GH

=AC : HE.
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[As pointed out by an Arabian Scholiast Alkauhi, this

proposition may be stated more generally. If, instead of one
point C on AB, we have two points C, D, and semicircles be
described on AC, BD as diameters, and if, instead of the

perpendicular to A B through C, we take the radical axis of the
two semicircles, then the circles described on different sides of

the radical axis and each touching it a.s well as two of the

semicircles are equal. The proof is similar and presents no
difficulty ]

Proposition 6.

Zet AB, the diameter of a semidrcle, be divided at C so that

AC= _ CJB [or in any ratio]. Describe semicircles within the

first semicircle and on AC, CB as diameters, and suppose a
circle drawn touching all three semicircles. If GH be the
diameter of this circle, to find tire relation between GH and AB.

Let GH be that diametcr of the circle which is parallel to
AB, and let the circlc touch the semicircles on AB, AC, CB

in D, E, F respectively.

Join AG, GD and BH, HD. Then, by Prop. l, AGD, BHD

are straight lines.

p N

For a like reason AEH, BFG are straight lines, as also

are CEG, CFH.

Let AD meet the semicircle on AC in/, and let BD meet

the semicircle on CB in K. Join CI, CK meeting AE, BF
20--2
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respectively in Z, M, and let GL, HM produced meet AB in

N, P respectively.

Now, in the triangle A GC, the perpendiculars from A, C on
the opposite sides meet in L. Therefore, by the properties of

triangles, GLN is perpendicular to AC.

Similarly HMP is perpendicular to CB.

Again, since the angles at I, K, D are right, CK is parallel
to AD, and CI to BD.

Therefore AC : CB = AL : LH

= AN: NP,

and BC : CA = BM : MG

= BP : PN.

Hence A___:NP -- _hrP : PB,

or AN, NP, PB are in continued proportion*.

Now, in the case where AC = _ CB,

AN=_ NP=_ PB,

whence BP : PN : NA : AB = 4 : 6 : 9 :19.

Therefore GH = NP = _ AB.

And similarly GH can bc found when AC : CB is equal to
any other given ratio'['.

This same proper_y appears incidentally in Pappus (p. 226) as an inter-

mediate step in the proof of the "ancient proposition" alluded to below.
t In general, ifAC • CB=k : 1, we have

BP : PN : NA : AB=I : _, : K_ : (1 + _,+_g),

and OH : AB=_ : (l+_+X2).

It may be interesting to add the enuneiatzon of the "ancient proposition"

stated by Pappus (p. 208) and proved by him after several auxiliary lemmas.

A Ns N2 C N1 B
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Proposition 7.

If circles be clrcun_scribed abouS and inscribed in a square,
_he circumscribe_ circle is double of She inscribed circle.

For the ratio of the circumscribed to the inscribed circle is

equal to that of the square on the diagonal to the square itself,
Le. to the ratio 2 : 1.

Proposition 8.

If AB be any chord of a circle whose centre is O, and if AB

be produced to C so that BC is equal to Sheradi_ ; if further CO
meet the circle in D and be produced to mee_ the circle a second
lime in E, She arc AE will be equal to three Si_nes She arc BD.

Draw the chord EF parallel to AB, and join OB, OF.

Let an ¢_pfl_X_ be formed by three _emicircles on AB, AC, CB as diameters, and
let a series of circles be described, the first of which touches all three semicircles,

while the second touches the first and two of the semicircles forming one end

of the _y_,os, the third touches the second and the same two semicircles, and
so on. Let the diameters of the successive circles be d_, d2, d_a .... their centres

O1, Os, Os .... and OxN l, O.rV_, OsNs,... the perpendiculars from the centres on
AB. Then it is to be proved that

O,N_= d_,

O_Ys=3ds,

0,_ =_.
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Then, since the angles OEF, OFE are equal,

L COF = 2 L OEF

= 2 L BCO, by parallels,

= 2 L BOD, since BC = BO.
Therefore

/ BOF = 3 / BOD,

so that the arc BF is equal to three times the arc BD.

Hence the arc AE, which is equal to the arc BF, is equal to
three times the arc BD*.

Proposition 9.

If in a circle two chords AB, CD which do not pass through
the centre intersect at right angles, then

(arc AiD) + (arc CB) = (arc AC) + (arc DB).

Let the chords intersect at O, and draw the diameter EF

parallel to AB intersecting CD in
H. EF will thus bisect CD at o

right angles in H, and a///_

(arc ED)= (arc EC). _ _ u\

\

Also EDF, ECF are semi- _F
circles, while /

(arc ED) -- (arc EA ) + (arc AD). _
Theretbre

(sum of arcs CF, EA, AD)= (arc c
of a semicircle).

And the arcs AE, BF are equal.

Therefore

(arc CB) + (arc AD) = (arc of a semicircle).

This proposition gives a method of reducing the trisection of any angle,

i.e. of any circular arc, to a problem of the kind known as vE_,s. Suppose that
AE is the arc to be trisected, and that ED is the diameter through E of the circle
of which AE is an arc. In order then to find an arc equal to one-third of AE,

we have only to draw through A a hne ABC, meeting the circle agazn in B and

ED produced in C, such that BC im equal to the radiuJ of the ezrcle. For a
discussion of this and other v¢6we,s see the Introduction, Chapter V.
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Hence the remainder of the circumference, the sum of the

arcs A C, DB, is also equal to a semicircle; and the proposition
is proved.

Proposition 10,

Suppose that TA, TB are two ta_.qents to a circle, while TC
c_ts _t. Let BD be the chord throm3h B parallel to TC, and l_

AD me_ TC in E. Then, if EH be drawn perpendicular to BD,
it will bisect it in H.

Let AB meet TC in F, and join BE.

Now the angle TA B is equal to the angle in the alternate

segment, i.e.
L TAB = L ADB

= L AET, by parallels.

Hence the triangles EAT, AFT have one angle equal and
another (at T) common. They are therefore similar, and

FT : AT = AT : ET.
Therefore

ET. TF = TA _

= TB _.

It follows that the triangles EBT, BFT are similar.

Therefore / TEB = Z TBF

---L TAB.

But the angle TEB is equal to the angle EBD, and the
angle TAB was proved equal to the angle EDB.
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Therefore Z EDB = z EBD.

And the angles at H are right angles.

It follows that BH = HD'.

Propomition 11.

If two chords AB, CD in a circle intersect at right angles b_

a point O, not being the centre, then

A O_+ BO 2+ CO_+ DO s= (diameter) _.

Draw the diameter CE, and join AC, CB, AD, BE.

Then the angle CAO is equal c
to the angle CEB in the same seg-
ment, and the angles A OC, EBC a a\
are right; therefore the triangles \
A OC, EBC are similar, and

z A CO = / ECB.

It follows that the subtended

arcs, and therefore the chords AD,

BE, axe equal, o e

* The figure of this proposition curiously recalls the figure of a problem

given by Pappus (pp. 836-8) among his lemmas to the first Book of the treatise

of Apollonius On ConSacts (_epl &ra¢_). The problem is, Given a c_rcle and

two 1_)in_ E, F (neither of which is necessarily, as in this case, the middle

point of the chord of the circle drawn through E, F), to draw through E, F

respectively two chards AD, AB lmvzug a comn_on extremity A and such that DB

parallel to EF. The analysis is as follows. Suppose the problem solved, BD

being parallel to FE. Let BT, the tangent at B, meet EF produced in T. (T

is not in general the pole of AB, so that TA is not generally the tangent at A.)

Then z TBF= Z BDA, in the alternate segment,

= Z AET, by parallels.
Therefore A, E, B, T are coneyelie, and

EF. FT = AF. FB.

But, the circle ADB and the point F being given, the rectangle AS'. S'B is given.

Also EF is given.
Hence S'T is known.

Thus, to make the construction, we have only to find the length of S'T from

the data, produce EF to T so that FT has the ascertained length, draw the
tangent TB, and then draw BD parallel to EF. DE, BS" will then meet in .4 on
the circle p-nd will be the chords required.
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Thus

(AO" + DO') + (BO" + CO') = AD' + BC"

= BE _+ BC I

= CE'.

Proposition 12.

If AB be the diameter of a semicircle, and TP, TQ the

tangents to it from any poznt T, a_d if AQ, BP be joined
meeting in R, then TR is perpendicular to AB.

Let TR produced meet AB in M, and join PA, QB.

Since the angle APB is right,

L PAB + L PBA = (a right angle)

= L AQB.

***....-yO

/,///'

A M 6

Add to each side the angle RBQ, and

Z PAB + z QBA = (exterior) L PRQ.

But z TP/i_ = Z PAB, and Z TQR = z QBA,

in the alternate segments;

therefore / TPR + L TQR = / PRQ.

It follows from this that TP = TQ = TR.

[For, if PT be produced to 0 so that TO = TQ, we have

z TOQ = L TQO.

And, by hypothesis, L P.RQ = L TPR + TQR.

By addition, L POQ + L PRQ = L TPR + OQR.
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It ibllows that, in the quadrilateral OPRQ, the opposite

angles are together equal to two right angles. Therefore a
circle will go round OPQR, and T is its centre, because
TIP = TO = TQ. Therefore TR = TP.]

Thus L TRP = L TPR = _ PAbl.

Adding to each the angle PRM,

L PAM+ / PRM= L TRP + L PRM

= (two right angles).

Therefore / APR + L AMR = (two right angle_),

whence z AMR = (a right angle)'.

Proposition 13.

I/'a diameter AB of a circle meet any chord CD, not a

diameter, in E, and if AM, BN be drawn perpendicular to CD,
then

CN = DMt. A

Let 0 be the centre of the ___ ,J_

circle, and OH perpendicular to
CD. Join BM, and produce HO to
meet BM in K.

Then CH = HD. c

And, by parallels, _ i_] /_

since BO = OA, s

BK = KM.

Therefore IVH = HM.

Accordingly CN = DM.

* TM is of course the polar of the intersection of PQ, AB, as it is the line
joiningthe poles of PQ, AB respectively.

t This propositionis oi course true whether M, N lie on CD or on CD
producedeach way. Pappus proves it for the latter case in his first lemma
(p. 788}to the secondBookof Apollonius'_6ae_.
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Proposition 14.

Let ACB be a semicircle on AB as diameter, and let AD,

BE be equal lengths measured along AB from A, B respectively.
On AD, BE as diameters describe semicircles on the side towards

C, and on DE as diameter a semicircle on the opposite side. Let

the perpe_dicular to AB through O, the centre of the first semi-
circle, meet the opposite semicircles in C, F respectively.

Then shall the area of the fig_re bounded by the circumferences
of all the semicircles (" which Archimedes calls ' Salinon '"*) be
equal to the area of the circle on CF as diametert.

By Eucl. II. 10, since ED is bisected at 0 and produced
to A,

EA _+ AD '_= 2 (EO" + OA_),

and CF = OA + OE = EA.

C

!

O 0 F-. B

F

* For the explanation of this name see note attached to the remarks on the

Liber Assumptorum in the Introduction, Chapter II. On the grounds there

given at length I believe adk,vo_ to be simply a Graecised form of the Latin

word salinum, 'salt-cellar.'

Cantor (Gesch. d. Mathematik, I. p. 285) compares this proposition

with Hippocrates' attempt to square the circle by means of lunes, but

points out that the object of Archimedes may have been the converse of that

of Hippocrates. For, whereas Hippocrates wished to find the area of a circle

from that of other figures of the same sort, Archimedes' intention was possibly

to equate the area of figures bounded by different curves to that of a circle

regarded as already known.
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Therefore

AB _+ DE* = 4 (EO' + OA') = 2 (CF _+ AD_).

But circles (and therefore semicircles) are to one another as

the squares on their radii (or diameters).

Therefore

(sum of semicircles on AB, DE)

= (circle on CF) + (sum of semicircles on AD, BE).
Therefore

(area of' salinon ') = (area of circle on CF as diam.).

Propomdtion 15.

Let AB be the diameter of a circle, AC a side of an iN.

scribed regular pentagon, D the middle point of the arc A C.
Join CD and produce it to meet BA produced in E; join AC,

DB meeting in F, and draw FM perpe_wlieular to AB. Then

EM = (radius of circle)*.

Let 0 be the centre of the circle, and join DA, DM, DO,
CB.

Now Z ABC = ] (right angle),

and z ABD = z DBC = _ (fight angle),

whence / A OD = _.(right angle).

Pappus gives (p. 418) a proposition almost identical with this among the

lemmas required for the comparison of the five regular polyhedra. His enunci-

ation is substantially as follows. If DH be half the side of a pentagon inscribed
in a circle, while DH is perpendicular to the radius OHA, and if HM be made

equal to AH, then OA is divided at M in extreme and mean ratio, OM being the

greater segment.

In the course of the proof it is first shown that AD, DM, MO are all equal,
as in the proposition above.

Then, the triangles ODA, DAM being slm_|_r,

OA : AD=AD : AM,

or (since AD=OM) OA : OM=OM : MA.
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Further, the triangles FCB, FMB are equal in all respects.

Therefore, in the triangles DCB, DMB, the sides CB, MB
being equal and BD common, while the angles CBD, MBD are
equal,

/ BCD = ,/BMD = § (right angle).

E A H M 0 B

But L BCD + L BAD = (two right angles)

= L BAD + Z DAE

= L BMD + L DMA.

so that Z DAE = A BCD,

and A BAD = Z AMD.

Therefore A D = .,liD.

Now, in the triangle DMO,

L MOD = § (right angle),

z DMO = _ (right angle).

Therefore Z ODM-- _ (right angle) = A OD ;

whence OM = MD.

Again Z EDA = (supplement of ADC)

= z CBA

- _ (fight angle)

= z ODM.
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Therefore, in the triangles EDA, ODM,

Z EDA = L ODM,

z EAD = L OMD,

and the sides AD, MD axe equal.

Hence the triangles are equal in all respects, and

EA = MO.

Therefore EM = A O.

Moreover DE-- DO ; and it follows that, since DE is equal
to the side of an inscribed hexagon, and DC is the side of an
inscribed decagon, .EC is divided at D in extreme aud mean

ratio [i.e. EC:ED=ED:DC]; "and this is proved in the
book of the Elements." [Eucl. XIIL 9, "If the side of the
hexagon and the side of the decagon inscribed in the same

circle be put together, the whole straight line is divided in

extreme and mean ratio, and the greater segment is the
aide of the hexagon."]



THE CATTLE-PROBLEM.

IT is required to find the number of bulls and cows of each

of four colours, or to find 8 unknown quantities. The first

part of the problem connects the unknowns by seven simple
equations; and the second part adds two more conditions to

which the unknowns must be subject.

Let W, w be the numbers of white bulls and cows respectively,

X, x .... black ......

Y, y .... yc]low ......

Z, z .... dappled ......

First part.

(I) w = (½+ ._)x + Y ..................... (_),
X = (¼ + _) Z + Y ..................... (_),

Z = Q + _) W + r ...................... (_/),

(II) w = (_+ 3)(x + _) .................. (_),
,_=(3 + _)(z+ _)...................... (d,
z = (._ + k) (Y + y) ..................... (_),

u = (k+ _)(w + w).................... (7).
Second part.

W + X = a square ............................. (8),

Y �Z= a triangular number .............. (,).

I

(
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[There is an ambiguity in the language which expresses the
condition (0). Literally the lines mean " When the white bulls

joined in number with the black, they stood firm ($p_re_ov)

with depth and breadth of equal measurement (/_erpo_ el_
_dSo_ ei_ e3pS_ Te) ; and the plains of Thrinakia, far-stretching
all ways, were filled with their multitude" (reading, with
Krumbiegel, _'X,_Oov_instead of _rXlvOov). Considering that, if

the bulls were packed together so as to form a square figure,
the number of them need not be a square number, since a bull

is longer than it is broad, it is clear that one possible interpre-

tation would be to take the 'square' to be a square figure, and
to understand condition (0) to be simply

W + X = a rectangle (i.e. a product of two factors).

The problem may therefore be stated in two forms:

(1) the simpler one in which, for the condition (0), there is
substituted the mere requirement that

W+ X -- a product of two whole numbers ;

(2) the complete problem in which all the conditions have to

be satisfied including the requirement (0) that

W + X = a square number.

The simpler probiem was solved by Jul. Ft. Wurm and may
be called

Wurm's Problem.

The solution of this is given (together with a discussion of

the complete problem) by Amthor in the geitschrift fi_r Math.

u. Phy,'ik (Hi.st. lift. Abtheilung), xxv. (1880), p. 156 sqq.

Multiply (a) by 336, (B) by 280, (7) by 126, and add ; thus

297W=74217, or 3'.llW=2.7.53Y ......... (d).

Then from (_) and (B) we obtain

891Z= 1580Y, or 3 °. I1Z = 2'. 5.79Y ....... (B'),

and 99X = 178Y, or 3'. llX = 2.89Y ............ (7').

Again, if we multiply (_) by 4800, (e) by 2800, (_) by 1260,
(,1) by 462, and add, we obtain

4657w = 2800X + 1260Z + 462 Y + 143 W ;
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and,by means ofthe valuesin(a'),(E),(7'),we derive

297. 4657w = 2402120Y,

or 3s . 11. 4657w = 2s. 5.7.9.3.37317 ........ (3').

Hence, by means of (7), (_), (e), we have

32. 11. 4657//= 13. 46489Y ............... (e'),

3'. 4657z = 2'. 5.7. 761 Y ............. (_'),

and 3s . 11. 4657x = 2.17. 15991Y ........... (7').

And, since all the unknowns must be whole numbers, we see

from the equations (d), (/3'),... (7') that 17must be divisible by
3° . 11. 4657, i.e. we may put

Y = 34. 11. 4657n = 4149387n.

Therefore the equations (a'), (/9') .... (7') give the following value_
for all the unknowns in terms of n, viz.

W= 2.3.7.53.4657n = 10366482n'

X= 2.32 . 89 4657_ = 7460514n
Y= 't_. 11. 4657n = 4149387n

Z= 2_.5.79.4657n = 7358060n .. .(A)
w=2 s.3.5.7.23.373n= 7206360_

x = 2.32 . 17.15991 n = 4893246_

y = 3_. 13. 46489n = 5439213n
z=2 _.3.5 7.11.761n= 3515820n

If now n = 1, the numbers are the smallest which will _tisfy

the seven equations (a), (fl),...(7); and we have next to find

such an integral value for n that the equation (0 will be
satisfied also. [The modified equati()n (_) requiring that W + X
must be a product of two fimtors is then simultaneously

_tisfied.]

Equation (t) requires that

y+z=q!q+l) 2 '

where q is some positive integer.
21

H. A.
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Putting for Y, g their values as above ascertained, we have

q(q+l)=(3".ll+2J 5 79).4657n
2 ' "

= 2471. 4657n

= 7. 353. 4657n.

Now q is either even or odd, so that either q=28, or

q = 2s-1, and the equation becomes

s (2s _ 1) = 7. 353. 4657n.

As n need not be a prime number, we suppose n -- u. v, where
u is the factor in n which divides s without a remainder and v

the factor which divides 2s +_1 without a remainder; we then

have the following sixteen alternative pairs of simultaneous

equations :

(1) s = u, 2s _+1 = 7. 353. 4657v,

(2) s = 7u, 2s _+1 = 353. 4657v,

(3) s = 353u, 2s _+1 = 7. 4657v,

(4) s = 4657u, 2s _+1 = 7. 353v,

(5) s = 7. 353u, 2s _+1 = 4657v,

(6) s = 7. 4657u, 2s _+1 -- 353v,

(7) s = 353. 4657u, _ _-/-1 = 7v,

(8) s = 7. 353. 4657u, 2s +_1 = v.

In order to find the least value of n which satisfies all the

conditions of the problem, we have to choose from the various
positive integral solutions of these pairs of equations that

particular one which gives _he smallest value for the product
U?) or n.

If we solve the various pairs and compare the results, we
find that it is the pair of equations

s -- 7u, 2s - 1 -- 353. 4657v,

which leads to the solution we want; this _lution is then

u-- 117423, v-- ],

so that n = uv = 117423 = 3s . 4349,



THE CATTLE-PROBLEM. 323

whence it follows that

s = 7a ---821961,

and q = 28 - 1 = 1643921.

Thus Y + Z = 2471. 4657n

= 2471. 4657. 117423

-- 1351238949081

1643921. 1643922
2

which is a triangulax number, as required.

The number in equation (0) which has to be the product of

two integers is now

W + X = 2.3. (7.53 + 3.89).4657n

= 2_.3. 11.29.4657n

= 2_. 3.11.29. 4657. 117423

= 2t.3 _.ll .29.4657.4349

= (2_. 3'. ¢349). (11.29. 4657)

-- 1409076. 1485583,

which is a rectangular number with nearly equal factors.

Tile solution is then as follows (substituting for n its value
117423) :

W = 1217263415886

X= 876035935422

Y= 487233469701

Z = 864005479380

w= 846192410280

x= 574579625058

y = 638688708099
z = 412838131860

artd the sum = 5916837175686
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Whe complete problem.

In this case the seven original equations (a), (_),...(7) have

to be satisfied, and the following further conditions must hold,

W + X = a square number = p', say,

Y + Z = a tl_angular number - q (q + 1 )2 , say.

Using the values found above (A), we have in the first place

p_= 2.3. (7.53 + 3.89).4657n

= 2'. 3. ll. 29.4657n,

and this cquation will be satisficd if

_ = 3 11.29. 4657_:_ = 4456749_¢ _,

where $ is any integer.

Thus the first 8 equations (a). (/3) .... (,/), (8) arc satistlcd by
the following values:

W= 2 3'. 7. ll. 29.53. 4657". _=' = 46200808287018. _:_

X = 2 3s. 11.29.89. 4657 _. $_ - 3324,9638308986. $_

Y= 35 11'. 29. 4657'. $' = ]8492776362863. $'_

Z= 2_ 3.5. ] 1.29 79. 46572. _:_ = 32793026546940. $_

w=2 s 3_.5.7.11.23.29.373.4657._:_=32116937723640._

x=2 3s. ll. 17.29. 15991. 4657. $ _ = 21807969217254. _._

y = 38. 11.13.29. 46489. 4657. $_ = 24241207098537. $'

z=2 _.3 _. 5.7.11 _.29.761.4657.$_ = 15669127269180. _'

It remains to determine $ so that equation (t) may be
satisfied, i.e. so that

Y+ Z= q(-q + 1)2

Substituting the ascertained values of Y, Z, we have

q(q+l)
2 - 51285802909803. _

ffi 3.7.11.29.353.4657 _._:_.
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Multiply by 8, and put

2q+ 1= t, 2. 4657._ = u,

and we have the "Pellian" equation

t_- 1 = 2.3.7.11.29. 353.u _,

that is, t2- 4729494 u_= 1.

Of the solutions of this equation the smallest has to be

chosen for which _ is divksible by 2. 4657.

When this is don(;,

u and is a whole number,
= 2. 4657

whence, by substitution of the value of $ so found in the last
system of equations, we should arrive _ the solution of the

complete l)roblem.

It would require t(_) much space to enter on the solution of
the " Pellian " equation

t_- 4729494 u'= 1,

and the curious reader is referred to Amthor's paper itself

Suffice it to say that hc develops _/4_729494 i_l the form of a
continued fraction as far as the period which occurs aftcr 91

convergents, aud, after an arduous piece of work, t_rrivcs at the
conclusion that

W = 1598 _,

where _ represents the fact that there are 206541 more

digits to follow, and tha_, with the same notation,

the whole number of cattle = 7766 __.

One may well be excused for doubting whether Archimedes

solved the complete problem, having regard to the enormous
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size of the numbers and the great difficulties inherent in the

work. By way of giving an idea of the space which would bc
required for merely writing down the results when obtained,

Amthor remarks that the large seven-figured logarithmic tables
contain on one page 50 lines with 50 figures or so in each, _y,
altogether 2500 figures; therefore one of the eight unknown
quantities would, when found, occupy 82½ such pages, and to

write down all the eight numbers would require a volume of
660 pages !]

% , • II
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